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Background

Development Experience

e System Setup
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Development Experience

o Applying optimization techniques

e NVIDIA TensorRT (model inference acceleration) 10000
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Background

Development Experience

o Applying optimization techniques
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Background

Concurrency Bottleneck

e Concurrency benchmarks

 End-to-end concurrency is bottlenecked by the decoder (on 12 CPUs)

e Reason: all-frame decoding vs. partial inference OO o1s
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Background

New Idea

e Packet gating
o selectively passing video packets to the decoder

e reducing both decoder and inference overheads
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Background

New Idea

e Packet gating
o selectively passing video packets to the decoder

e reducing both decoder and inference overheads

Comparison with Existing Ideas

Reduce Commodity Offline
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PacketGame Design

e To selectively pass packets to the decoder, we need quantitive “scores” for
video packets from concurrent streams
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback

e Redundancy: the new inference result == the latest result
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback
e MAB-based approach
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback
e MAB-based approach
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback
e MAB-based approach
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback
e MAB-based approach
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback

e MAB-based approach
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PacketGame Design

Temporal Estimator

e Available hint#1: historical feedback
e MAB-based approach
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PacketGame Design

Contextual Predictor

o Available hint#2: packet-level metadata

e Metadata: packet size & picture type
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PacketGame Design

Contextual Predictor

o Available hint#2: packet-level metadata

e Metadata: packet size & picture type

e Neural network-based predictor
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PacketGame Design

Contextual Predictor

o Available hint#2: packet-level metadata

e Metadata: packet size & picture type

e Neural network-based predictor

e Training: offline collected pairs of (X, Y)
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PacketGame Design

Contextual Predictor

e Packet scores returned by two modules, how to fuse them?
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PacketGame Design

Contextual Predictor

e Fusing the temporal estimator’s output as another input view of NN
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PacketGame Design

Contextual Predictor

e Fusing the temporal estimator’s output as another input view of NN
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PacketGame Design

Contextual Predictor

e Fusing the temporal estimator’s output as another input view of NN
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PacketGame Design

Cross-Stream Selector

 Combinatorial optimization problem

e Given predicted packet scores and packet decoding costs, under a decoding
budget, maximize the summed scores of selected packets
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PacketGame Design

Cross-Stream Selector

 Combinatorial optimization problem

o Given predicted packet scores and , under a decoding
budget, maximize obtained packet scores
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PacketGame Design

Cross-Stream Selector

 Combinatorial optimization problem

e Given predicted packet scores and packet decoding costs, under a decoding
budget, maximize obtained packet scores

Packet Packet

Scores Cross Stream Data Decoder
Selector

o we formulate this problem as an approximately fractional knapsack and
prove the of the greedy algorithm

. , In practice, typically greater than 95%
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PacketGame Design

Overview

e Overall performance guarantee

o we prove the regret in T rounds is at most O(VT)

PacketGame
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Evaluation
Setting

e 2 public datasets, 1 dataset of collected from campus IP cameras, 3 types of sources

e 4 video inference tasks

Dataset Video Source Inference Task

Person Counting (PC)
CampusiK | IF Camera Anomaly Detection (AD)
YT-UGC Offline Video Super-resolution (SR)
FireNet Mobile Camera Fire Detection (FD)

e opensource: https://github.com/yuanmug97/PacketGame
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Evaluation

Overall Performance

e target accuracy 90%, PacketGame achieves 2.1-4.8x end-to-end concurrency
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Inference Accuracy

Evaluation
Ablation Study

o Contributions of contextual predictor and temporal estimator varies in
different tasks

— Contextual Temporal — PacketGame =— Random
1

0.9 §‘ 0.0 ST N oV A
3 g 3
0. .
<QE1) O
S
0.7 S 0.7
i
&
0.6 E 0.6 _W\/\/V
0.5 Person Counting 0.5 Super-Resolution
1 3 5 7 O 11 13 15 17 19 21 23 25 1 3 5 7 9 11 13 15 17 19 21 23 25

Time Segments 36 Time Segments



Evaluation

Microbenchmarks

o PacketGame shows robust effectiveness with respect to involved variables,
including training size

o
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Evaluation

Microbenchmarks

o PacketGame shows robust effectiveness with respect to involved variables,
including training size, window length

A Contextual [£) Temporal
>
& s, 0.6
S S |
3 S 10
™ = | 1 NH DA
3 0.2 LA |
= @ 1 QY
- 4
| | | L 0
0.01 01 02 0508 1T 2 5 10 25
Ratio of Training Set Window Length

Training Size Window Length

38



Evaluation

Microbenchmarks

o PacketGame shows robust effectiveness with respect to involved variables,
including training size, window length, video codec, etc.
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Evaluation

Microbenchmarks
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for more about design, theoretical analysis, experimental details,

please read our paper :)
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Conclusions

Take-Home Messages

e The system bottleneck for multi-module pipeline is constantly changing, and
now it’s the decoder’s turn for large-scale video analytics.

e Packet gating is promising and easy to implement. Try PacketGame for your
video analytics system :)

e In the future, similar ideas could be explored for packet-level selection of other
modalities, like audio and motion signals. Hope to inspire your research!
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