

MLink: Linking Black-box Models for Collaborative Multi-model Inference

Mu Yuan, Lan Zhang, Xiang-Yang Li University of Science and Technology of China

University of Science and Technology of China

Menu **Main contents**

Introduction

- Problem Statement
- Black-box Model Linking
- Collaborative Multi-model Inference
- Evaluation
- Conclusion

with a single model.

Smart Speaker

Intelligent Traffic

Complex intelligent services that are difficult (or even impossible) to develop

Autonomous Vehicles

with a single model.

Smart Speaker

Intelligent Traffic

Complex intelligent services that are difficult (or even impossible) to develop

Autonomous Vehicles

with a single model.

Smart Speaker

Intelligent Traffic

Complex intelligent services that are difficult (or even impossible) to develop

Autonomous Vehicles

with a single model.

Smart Speaker

Intelligent Traffic

Complex intelligent services that are difficult (or even impossible) to develop

Autonomous Vehicles

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

How to obtain as accurate inference results as possible without the exact execution of ML models?

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

How to obtain as accurate inference results as possible without the exact execution of ML models?

Exact Execution Resulting Workload

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

How to obtain as accurate inference results as possible without the exact execution of ML models?

Exact Execution

Resulting Workload

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

How to obtain as accurate inference results as possible without the exact execution of ML models?

Exact Execution

Resulting Workload

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

Resulting Workload Exact Execution

- Multi-task learning and zipping
- Model compression
- Inference reusing
- Source filtering
- Multi-model scheduling

Model Linking

- Model Linking
 - machine over-learning

- Model Linking
 - machine over-learning
 - cross-task semantic correlation

- Model Linking
 - machine over-learning
 - cross-task semantic correlation

Predict un-executed models' inference results based on executed models'?

- Model Linking
 - machine over-learning
 - cross-task semantic correlation

Predict un-executed models' inference results based on executed models'?

Exact Execution Resulting Workload

- Model Linking
 - machine over-learning
 - cross-task semantic correlation

Predict un-executed models' inference results based on executed models'?

Exact Execution

Resulting Workload

- Model Linking
 - machine over-learning
 - cross-task semantic correlation
- **Target application**
 - inference results of multiple models are required
 - cost budget is too limited to run them all

Introduction Challenges

- build lightweight and accurate links among heterogeneous models
- efficiently select models to execute and models to be predicted

Different input modalities

Different model architectures

CNNs, RNNs, Auto-encoders, Transformers ...

Different DL frameworks

Introduction Challenges

- build lightweight and accurate links among heterogeneous models
- efficiently select models to execute and models to be predicted

Different input modalities

Different model architectures

CNNs, RNNs, Auto-encoders, Transformers ...

Different DL frameworks

non-intrusive design and implementation

Introduction Challenges

- build lightweight and accurate links among heterogeneous models
- efficiently select models to execute and models to be predicted

dynamic re-selection

V.S.

NP-hard combinatory optimization problem

Menu Main contents

- Introduction
- Problem Statement
- Black-box Model Linking
- Collaborative Multi-model Inference
- Evaluation
- Conclusion

Problem Statement Model Linking

• black-box models $F = \{f_i\}_{i=1}^k$ where $f_i : X_i \to Y_i$

Problem Statement Model Linking

- black-box models $F = \{f_i\}_{i=1}^k$ where $f_i : X_i \to Y_i$
- Assumption: same or aligned input spaces $\{X_i\}_{i=1}^k$
 - common in multi-model applications

multi-task robotics

drone-based video monitoring

Same Input Spaces

- black-box models $F = \{f_i\}_{i=1}^k$ where $f_i : X_i \to Y_i$
- Assumption: same or aligned input spaces $\{X_i\}_{i=1}^k$
 - common in multi-model applications

- black-box models $F = \{f_i\}_{i=1}^k$ where $f_i : X_i \to Y_i$
- Assumption: same or aligned input spaces $\{X_i\}_{i=1}^k$
 - common in multi-model applications
 - available alignment techniques

time synchronization

spatial alignment

image from http://cvlab.cse.msu.edu/ project-sequence-alignment.html

semantic alignment

image from paper "AlignNet: A Unifying Approach to Audio-Visual Alignment"

- black-box models $F = \{f_i\}_{i=1}^k$ where $f_i : X_i \to Y_i$
- model link $g_{i,j}: Y_i \to Y_j$
 - <u>source</u> model f_i
 - <u>target</u> model f_i

- black-box models $F = \{f_i\}_{i=1}^k$ where $f_i : X_i \to Y_i$
- model link $g_{i,j}: Y_i \to Y_j$
 - <u>source</u> model f_i
 - <u>target</u> model f_i
- composite function $g_{i,i} \circ f_i : X_i \to Y_j$

Problem Statement Multi-source Model Links Ensemble

• when $k \ge 3$, there are multiple model links for one target model

Problem Statement Multi-source Model Links Ensemble

- when $k \ge 3$, there are multiple model links for one target model
- given a set of source models $A \subseteq F$ and a target model f_i , we have a multi-expert model $\{g_{i,j} \circ f_i\}_{f_i \in A}$

Problem Statement Multi-source Model Links Ensemble

- when $k \ge 3$, there are multiple model links for one target model
- given a set of source models $A \subseteq F$ and a target model f_i , we have a multi-expert model $\{g_{i,j} \circ f_i\}_{f_i \in A}$
- $h_{A,i}$ as the ensemble model link

Target Application

- inference results of multiple models are required
- cost budget is too limited to run them all

nodels run

- cost function $c(\cdot)$
 - e.g., GPU memory, inference delay

Target Application

- inference results of multiple models are required
- cost budget is too limited to run them all

- cost function $c(\cdot)$
 - e.g., GPU memory, inference delay
- cost budget *B*

Target Application

- inference results of multiple models are required
- cost budget is too limited to run them all

- cost function $c(\cdot)$
 - e.g., GPU memory, inference delay
- cost budget *B*
- performance measurement $p_i(h_{A,i})$
 - normalized into [0,1]
 - e.g., accuracy for classification, IoU for detection

Target Application

- inference results of multiple models are required
- cost budget is too limited to run them all

- cost function $c(\cdot)$
- cost budget B
- performance measurement $p_i(h_{A,i})$

average output accuracy

Target Application

- inference results of multiple models are required
- cost budget is too limited to run them all

Optimization Problem

Menu **Main contents**

- Introduction
- Problem Statement
- Black-box Model Linking
- **Collaborative Multi-model Inference**
- Evaluation
- Conclusion

Black-box Model Linking **Black-box outputs or intermediate features?**

- real-world deployment typically provide only black-box inference API
 - virtual machine, container, ...

black-box output-based link

中国科学校

Black-box Model Linking **Black-box outputs or intermediate features?**

- real-world deployment typically provide only black-box inference API
- given the same (or aligned) inputs, correlations between black-box outputs are more explicit and easier to learn
 - experimental evidences

intermediate feature-based link

black-box output-based link

副雄空

output-based feature-based

Black-box Model Linking **Black-box outputs or intermediate features?**

- real-world deployment typically provide only black-box inference API
- given the same (or aligned) inputs, correlations between black-box outputs are more explicit and easier to learn
 - experimental evidences
 - theoretical evidences

When the training data is abundant for the representation shared among tasks, learning a new task branch $f \in F$ requires C(F) sample complexity, where $C(\cdot)$ measures the complexity of a hypothesis family.

intermediate feature-based link

black-box output-based link

中国雄学校

- output formats determine the model link's architecture
 - fixed-length vector & variable-length sequence

Seq-to-Seq

- output formats determine the model link's architecture
 - fixed-length vector & variable-length sequence
- Vec-to-Vec
 - ReLU-activated multilayer perception (MLP)

- output formats determine the model link's architecture
 - fixed-length vector & variable-length sequence
- Seq-to-Vec
 - Embedding LSTM MLP

Seq-to-Vec

fixed-length vector

variable-length sequence

- output formats determine the model link's architecture
 - fixed-length vector & variable-length sequence
- Vec-to-Seq
 - MLP Encoder
 - Embedding LSTM Attention MLP Decoder

variable-length sequence

- output formats determine the model link's architecture
 - fixed-length vector & variable-length sequence
- Seq-to-Seq
 - Embedding LSTM Encoder
 - Embedding LSTM Attention MLP Decoder

Seq-to-Seq

- output formats determine the model link's architecture
 - fixed-length vector & variable-length sequence
- target model's task determines output activation
 - softmax for single-label classification, linear for regression and localization, etc.

Black-box Model Linking Ensemble

• weighted sum of model links

$$h_{A,j} = \sigma(\sum_{f_i \in A} g_{i,j} \circ f_i(x_i))$$

- σ denotes the activation function

Black-box Model Linking Training

- soft-label supervision

$$\min \sum_{i=l}^{n} L_{j}(h_{A,j}(\{y_{i}^{l}\}_{f_{i} \in A}), y_{j}^{l})$$

target model's task determines the loss function

knowledge distillation methods show that the teacher model's outputs augment the hard-label space with relations among different classes

Menu **Main contents**

- Introduction
- Problem Statement
- Black-box Model Linking
- Collaborative Multi-model Inference
- Evaluation
- Conclusion

Collaborative Multi-model Inference **Assumptions and Observations**

- F(A) as the objective function to optimize
 - gain of selecting one more model f_i $\Delta(A, f_i) = F(A \cup \{f_i\}) - F(A)$

Collaborative Multi-model Inference **Assumptions and Observations**

- F(A) as the objective function to optimize
 - gain of selecting one more model f_i $\Delta(A, f_i) = F(A \cup \{f_i\}) - F(A)$
- Assume that adding a source of model link into the ensemble model will not decrease the performance:

 $p(A \cup \{f_i\}, f_j) \ge p(A, f_j)$

• Then $\Delta(A, f_i) \ge 0$, i.e., the objective function is nondecreasing.

Collaborative Multi-model Inference

Assumptions and Observations

- two cases observed
 - dominance: the performance of the ensemble model approximately equals the best-performance source of model links.

 $f_{i^*} = argmax_{f_i \in A} p_j(g_{ij})$ $p_j(h_{A,f_i}) \approx p_j(g_{i^*,j})$

Collaborative Multi-model Inference

Assumptions and Observations

- two cases observed
 - dominance: the performance of the ensemble model approximately equals the best-performance source of model links.
 - mutual assistance: the multi-source model links ensemble outperforms any single source.

 $\forall f_i \in A, p_j(h_{A,f_i}) > p_j(g_{i,j})$

Collaborative Multi-model Inference **Activation Probability**

 solving the optimization problem is NP-hard and the existing (1 - 1/e)-approximation algorithm needs partial-enumeration and requires $O(n^5)$ computations of the objective function.

see paper: Sviridenko, M. 2004. A note on maximizing a submodular set function subject to a knapsack constraint. Operations Research Letters, 32(1): 41-43.

Collaborative Multi-model Inference () 体固維ななよな **Activation Probability**

- three factors
 - the average performance of model links from f_i to all the others

$$P_{i}^{1} = \frac{\sum_{j \neq i} p_{j}(g_{i,j})}{|F| - 1}$$

Collaborative Multi-model Inference () 中國結系法法 **Activation Probability**

- three factors
 - the average performance of model links from f_i to all the others

$$P_{i}^{1} = \frac{\sum_{j \neq i} p_{j}(g_{i,j})}{|F| - 1}$$

 the average performance of model links targeted to f_i from all the others

$$P_i^2 = \frac{\sum_{j \neq i} p_j(g_{j,i})}{|F| - 1}$$

Collaborative Multi-model Inference () 中國論導進業資 **Activation Probability**

- three factors
 - the average performance of model links from f_i to all the others

$$P_{i}^{1} = \frac{\sum_{j \neq i} p_{j}(g_{i,j})}{|F| - 1}$$

 the average performance of model links targeted to f_i from all the others

$$P_i^2 = \frac{\sum_{j \neq i} p_j(g_{j,i})}{|F| - 1}$$

• the cost of f_i $c(f_i)$

Collaborative Multi-model Inference **Activation Probability**

definition

$$P_{i} = \frac{1 + P_{i}^{1} - P_{i}^{2}}{wc(f_{i})}$$

 $w = 2/\min c(f_i)$ by normalization

 This activation probability can be regarded as a coefficient that is positively correlated with the gain when selecting a model.

$$P_i^1 = \frac{\sum_{j \neq i} p_j(g_{i,j})}{|F| - 1} \quad P_i^2 = \frac{\sum_{j \neq i} p_j(g_{i,j})}{|F| - 1}$$

Collaborative Multi-model Inference Algorithm

- select greedily w.r.t. activation probability under the cost budget
- activated models do exact inference while the others' outputs will be predicted by the model link ensemble of activated sources.

Collaborative Multi-model Inference () 中國結構法資 Algorithm

- select greedily w.r.t. activation probability under the cost budget
- activated models do exact inference while the others' outputs will be predicted by the model link ensemble of activated sources.
- periodic re-profiling and re-selection
 - By reasonably setting the period length and the proportion of data used for profiling, we can amortize the overheads of loading/unloading ML models to negligible.

Menu **Main contents**

- Introduction
- Problem Statement
- Black-box Model Linking
- **Collaborative Multi-model Inference**
- **Evaluation**
- Conclusion

Evaluation Implementation

- **MLink** implemented in Python based on TensorFlow 2.0
- We tested the integration on programs implemented with TensorFlow, PyTorch and MindSpore.

- Hollywood2
 - reprocess original videos to obtain a mutli-modality dataset
 - 7 models deployed

Task Class	ML Model	Input Modality	Output Format	Metric
Single-label Classification	Gender Classification	Audio	2-D Softmax Labels	Acc.
Multi-label Classification	Action Classification	Video	12-D Sigmoid Labels	mAP
Localization	Face Detection	Imaga 1 D Daundina	1 D Pounding Pov	
Localization	Person Detection	Inage	4-D Bounding Box	100
Regression	Age Prediction	Image	1-D Scalar	MAE
Socuence Constian	Image Captioning	Image	Variable longth Toxt	
Sequence Generation	Speech Recognition	Audio	variable-length lext	

- Hollywood2
 - reprocess original videos to obtain a mutli-modality dataset
 - 7 models deployed

Task Class	ML Model	Input Modality	Output Format	Metric
Single-label Classification	Gender Classification	Audio	2-D Softmax Labels	Acc.
Multi-label Classification	Action Classification	Video	12-D Sigmoid Labels	mAP
Localization	Face Detection	Imaga	1 D Rounding Roy	
LOCAIIZATION	Person Detection	inage	4-D Bounding Box	100
Regression	Age Prediction	Image	1-D Scalar	MAE
Saguanaa Ganaratian	Image Captioning	Image	Variable longth Taxt	
Sequence Generation	Speech Recognition	Audio	variable-length lext	

- Hollywood2
 - reprocess original videos to obtain a mutli-modality dataset
 - 7 models deployed

Task Class	ML Model	Input Modality	Output Format	Metric
Single-label Classification	Gender Classification	Audio	2-D Softmax Labels	Acc.
Multi-label Classification	Action Classification	Video	12-D Sigmoid Labels	mAP
Localization	Face Detection	Imaga	1 D Rounding Roy	
LUCAIIZALIUTI	Person Detection	IIIaye	4-D Bounding Box	100
Regression	Age Prediction	Image	1-D Scalar	MAE
Socuence Constian	Image Captioning	Image	Variable longth Taxt	
Sequence Generation	Speech Recognition	Audio	vanabie-iengin iext	

- Hollywood2
 - reprocess original videos to obtain a mutli-modality dataset
 - 7 models deployed

Task Class	ML Model	Input Modality	Output Format	Metric
Single-label Classification	Gender Classification	Audio	2-D Softmax Labels	Acc.
Multi-label Classification	Action Classification	Video	12-D Sigmoid Labels	mAP
Localization	Face Detection	Imaga		
LUCAIIZALIUN	Person Detection	inage	4-D Bounding Box	100
Regression	Age Prediction	Image	1-D Scalar	MAE
Soquenee Concretion	Image Captioning	Image	Variable longth Taxt	
Sequence Generation	Speech Recognition	Audio	valiable-length lext	

Evaluation Model Links' Performance

- pairwise model links are trained using 1%, 5%, 10%, 20%, 48% data
 - RMSprop optimizer with same hyperparameters (0.01 learning rate, 100 epochs, 32 batch size)

Evaluation Model Links' Performance

- pairwise model links are trained using 1%, 5%, 10%, 20%, 48% data
 - RMSprop optimizer with same hyperparameters (0.01 learning rate, 100 epochs, 32 batch size)
- model links significantly outperform knowledge distillation-based student models

(d) 1a

Evaluation **Semantic Correlation**

attention coverage has a positive correlation with the model linking performance

(a) Attention heatmaps of Object (b) Scene-to-Object MLink acand Scene models. curacy vs. attention overlaps.

Evaluation **Semantic Correlation**

- attention coverage has a positive correlation with the model linking performance
- Pearson correlation coefficients between outputs also show a positive correlation with the performance

(a) Attention heatmaps of Object (b) Scene-to-Object M and Scene models. curacy vs. attention over

Table 2: IoU scores of model links targeted to the Pearson model and the Pearson correlations.

	Source	Action	Age	Face	Ge
0.7~ 0.8~ 0.9~ 0.8 0.9 1.0 h Heatmap	IoU (%)	39.4	38.9	58.5	3
ILink ac- erlaps.	Pearson Corr.	0.123	0.042	0.244	-0

Evaluation **MLink Ensemble**

• dominance cases

 $p_j(h_{A,f_i}) \approx p_j(g_{i^*,j})$

Table 3: Dominance and mutual assistance cases in model link ensemble. Column titles are source models and row titles are target models. The dominant source's performance is in bold.

Target \ Source	Action	Age	Caption	Face	Gender	Person	Speech	Ensemb
Action mAP (%)	_	12.8	29.7	10.1	9.3	9.9	8.5	30.8
Face IoU (%)	11	11.2	0	_	10.3	31.9	0	32.2
Person IoU (%)	39.4	38.9	0	58.5	39.0	_	0	59.2
Age MAE	3.04	_	3.02	3.07	3.0	3.03	3.0	2.98
Gender Acc. (%)	92	92.1	92	92.1	_	92	92	92.3

Evaluation **MLink Ensemble**

- dominance cases
- mutual assistance cases $\forall f_i \in A, p$

Table 3: Dominance and mutual assistance cases in model link ensemble. Column titles are source models and row titles are target models. The dominant source's performance is in bold.

Target \ Source	Action	Age	Caption	Face	Gender	Person	Speech	Ensemb
Action mAP (%)	_	12.8	29.7	10.1	9.3	9.9	8.5	30.8
Face IoU (%)	11	11.2	0	_	10.3	31.9	0	32.2
Person IoU (%)	39.4	38.9	0	58.5	39.0	_	0	59.2
Age MAE	3.04	-	3.02	3.07	3.0	3.03	3.0	2.98
Gender Acc. (%)	92	92.1	92	92.1	_	92	92	92.3

$$p_j(h_{A,f_j}) > p_j(g_{i,j})$$

Evaluation **Real Systems**

- Smart Building
 - two days (one weekday & one weekend) of videos (1 frame per minute) from 58 cameras
 - 3 models deployed
 - person counting, action classification, object counting

Evaluation **Real Systems**

- City Traffic
 - two days (one weekday & one weekend) of videos (1 FPS) from 10 cameras at road intersections
 - 3 models deployed
 - person counting, traffic condition classification, vehicle counting

Standalone: selects models in ascending order of delay and runs models independently

- inference results of multiple models are required
- cost budget is too limited to run them all

- Standalone: selects models in ascending order of delay and runs models independently
- MTL: a multi-task learning approach

- inference results of multiple models are required
- cost budget is too limited to run them all

- <u>Standalone</u>: selects models in ascending order of delay and runs models independently
- MTL: a multi-task learning approach
- <u>DRLS</u>: a deep reinforcement learning-based scheduling approach

- inference results of multiple models are required
- cost budget is too limited to run them all

- <u>Standalone</u>: selects models in ascending order of delay and runs models independently
- MTL: a multi-task learning approach
- <u>DRLS</u>: a deep reinforcement learning-based scheduling approach
- Reducto: a low-level feature difference-based frame filtering approach

- inference results of multiple models are required
- cost budget is too limited to run them all

GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone

Method	Building (5/9 Gl	B Mem.)	City (5/9 GB Mem.)		
method	Acc. (%)	Mem.)City (5/9 GTime (ms)Acc. (%)30/7433.3/66.732.861.358.7/10739.5/77.645.7/8984.1/95.339.3/8494/97.4	Time (ms)		
Standalone	33.3/66.7	30/74	33.3/66.7	55/121	
MTL	53.3	32.8	61.3	32.5	
DRLS	45.7/81.3	58.7/107	39.5/77.6	102/188	
Reducto	91.8/96.9	45.7/89	84.1/95.3	64/127	
MLink	94.1/97.9	39.3/84	94/97.4	62/125	

GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone

Method	Building (5/9	GB Mem.)	City (5/9 GB Mem.)		
	Acc. (%)	Time (ms)	Acc. (%)	Time (ms)	
Standalone	33.3/66.7	30/74	33.3/66.7	55/121	
MTL	53.3	32.8	61.3	32.5	
DRLS	45.7/81.3	58.7/107	39.5/77.6	102/188	
Reducto	91.8/96.9	45.7/89	84.1/95.3	64/127	
MLink	94.1/97.9	39.3/84	94/97.4	62/125	

fast but accuracy is too low

GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone

Mathad	Building (5/9 GB Mem.)		City (5/9 GB Mem.)	
Method	Acc. (%)	Time (ms)	Acc. (%)	Time (ms)
Standalone	33.3/66.7	30/74	33.3/66.7	55/121
MTL	53.3	32.8	61.3	32.5
DRLS	45.7/81.3	58.7/107	39.5/77.6	102/188
Reducto	91.8/96.9	45.7/89	84.1/95.3	64/127
MLink	94.1/97.9	39.3/84	94/97.4	62/125

GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone

Method	Building (5/9 GB Mem.)		City (5/9 GB	Mem.)	
	Acc. (%)	Time (ms)	Acc. (%)	Time (ms)	
Standalone	33.3/66.7	30/74	33.3/66.7	55/121	
MTL	53.3	32.8	61.3	32.5	
DRLS	45.7/81.3	58.7/107	39.5/77.6	102/188	
Reducto	91.8/96.9	45.7/89	84.1/95.3	64/127	<u>good trade-offs</u> but only applicable to video st
MLink	94.1/97.9	39.3/84	94/97.4	62/125	

GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone

Method	Building (5/9 Gl	B Mem.)	City (5/9 GB Mem.)		
Method	Acc. (%)	Time (ms)	Acc. (%)	Time (ms)	
Standalone	33.3/66.7	30/74	33.3/66.7	55/121	
MTL	53.3	32.8	61.3	32.5	
DRLS	45.7/81.3	58.7/107	39.5/77.6	102/188	
Reducto	91.8/96.9	45.7/89	84.1/95.3	64/127	
MLink	94.1/97.9	39.3/84	94/97.4	62/125	

<u>accurate, lightweight,</u> and widely applicable

Menu **Main contents**

- Introduction
- Problem Statement
- Black-box Model Linking
- **Collaborative Multi-model Inference**
- Evaluation
- Conclusion

Conclusion **Take-home Messages**

our model linking approach

effective connections between black-box outputs of models can be built via

Conclusion **Take-home Messages**

- our model linking approach
- trade-off of multi-model inference

effective connections between black-box outputs of models can be built via

model link-based scheduling is a promising way towards cost-performance

MLink: Linking Black-box Models for Collaborative Multi-model Inference

Thanks for your listening.

Mu Yuan (ym0813@mail.ustc.edu.cn), Lan Zhang, Xiang-Yang Li University of Science and Technology of China

