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 Introduction
 Challenges

• build lightweight and accurate links 
among heterogeneous models


• efficiently select models to execute 
and models to be predicted

NP-hard combinatory  
optimization problem

dynamic re-selection

v.s.
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 Problem Statement
 Model Linking

• black-box models  where 


• Assumption: same or aligned input spaces 


• common in multi-model applications


• available alignment techniques

F = {fi}k
i=1 fi : Xi → Yi

{Xi}k
i=1

time synchronization spatial alignment

image from http://cvlab.cse.msu.edu/
project-sequence-alignment.html

semantic alignment

image from paper “AlignNet: A Unifying Approach 
to Audio-Visual Alignment”
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 Problem Statement
 Model Linking

• black-box models  where 


• model link 


• source model 


• target model 


• composite function 

F = {fi}k
i=1 fi : Xi → Yi

gi,j : Yi → Yj

fi

fj

gi,j ∘ fi : Xi → Yj
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 Problem Statement
 Multi-source Model Links Ensemble

• when , there are multiple model 
links for one target model


• given a set of source models  and 
a target model , we have a multi-expert 
model 


•  as the ensemble model link

k ≥ 3

A ⊆ F
fj

{gi,j ∘ fi}fi∈A

hA,j

f1 h{2,3},1

x2

x3
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B
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 Problem Statement
 Multi-model Inference under a Budget

• cost function 


• cost budget 


• performance measurement 

c( ⋅ )

B

pj(hA,j)

• inference results of multiple models 
are required


• cost budget is too limited to run 
them all

Target Application

Optimization Problem 

max
A⊆F

average output accuracy

(
1

|F |
( ∑

fi∈A

1

⏟
activated

+ ∑
fj∈F∖A

pj(hA,j)

predicted

)) s . t . ∑
fi∈A

c( fi)

exact inference

+ ∑
fj∈F∖A

c(hA,j)

model links

≤ B .



 Menu
 Main contents

• Introduction


• Problem Statement


• Black-box Model Linking 

• Collaborative Multi-model Inference


• Evaluation


• Conclusion



 Black-box Model Linking
 Black-box outputs or intermediate features?

• real-world deployment typically provide only 
black-box inference API


• virtual machine, container, …

black-box 
output-based link

intermediate 
feature-based link



 Black-box Model Linking
 Black-box outputs or intermediate features?

• real-world deployment typically provide only 
black-box inference API


• given the same (or aligned) inputs, 
correlations between black-box outputs are 
more explicit and easier to learn


• experimental evidences

black-box 
output-based link

intermediate 
feature-based link

m
AP

 (%
)

0
7.5
15

22.5
30

Ratio of training data (%)

1 5 10 20 48

output-based
feature-based



 Black-box Model Linking
 Black-box outputs or intermediate features?

• real-world deployment typically provide only 
black-box inference API


• given the same (or aligned) inputs, 
correlations between black-box outputs are 
more explicit and easier to learn


• experimental evidences


• theoretical evidences

black-box 
output-based link

intermediate 
feature-based link

When the training data is abundant for the representation 
shared among tasks, learning a new task branch  
requires  sample complexity, where  measures 
the complexity of a hypothesis family.

f ∈ F
C(F) C( ⋅ )
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 Black-box Model Linking
 Model link architecture

• output formats determine the model link’s 
architecture


• fixed-length vector & variable-length sequence


• target model’s task determines output activation


• softmax for single-label classification, linear for 
regression and localization, etc.



 Black-box Model Linking
 Ensemble

• weighted sum of model links


•  denotes the activation functionσ

hA,j = σ(∑
fi∈A

gi,j ∘ fi(xi))



 Black-box Model Linking
 Training

• soft-label supervision


• knowledge distillation methods show that the teacher model’s outputs 
augment the hard-label space with relations among different classes


• target model’s task determines the loss function

min
n

∑
i=l

Lj(hA,j({yl
i}fi∈A), yl

j)
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•  as the objective function to optimize


• gain of selecting one more model 
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 Assumptions and Observations

•  as the objective function to optimize


• gain of selecting one more model 


• Assume that adding a source of model link into the 
ensemble model will not decrease the performance:


• Then , i.e., the objective function is 
nondecreasing.

F(A)

fi

Δ(A, fi) ≥ 0


max
A⊆F

average output accuracy

(
1

|F |
( ∑

fi∈A

1

⏟
activated

+ ∑
fj∈F∖A

pj(hA,j)

predicted

))

s . t . ∑
fi∈A

c( fi)

exact inference

+ ∑
fj∈F∖A

c(hA,j)

model links

≤ B .

Optimization Problem

Δ(A, fi) = F(A ∪ {fi}) − F(A)

p(A ∪ {fi}, fj) ≥ p(A, fj)
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 Collaborative Multi-model Inference
 Assumptions and Observations

• two cases observed


• dominance: the performance of the 
ensemble model approximately equals the 
best-performance source of model links.


• mutual assistance: the multi-source model 
links ensemble outperforms any single 
source.

∀fi ∈ A, pj(hA,fj) > pj(gi,j)



 Collaborative Multi-model Inference
 Activation Probability

• solving the optimization problem is NP-hard 
and the existing ( )-approximation 
algorithm needs partial-enumeration and 
requires  computations of the objective 
function.

1 − 1/e

O(n5) 
max
A⊆F

average output accuracy

(
1

|F |
( ∑

fi∈A

1

⏟
activated

+ ∑
fj∈F∖A

pj(hA,j)

predicted

))

s . t . ∑
fi∈A

c( fi)

exact inference

+ ∑
fj∈F∖A

c(hA,j)

model links

≤ B .

Optimization Problem

see paper: Sviridenko, M. 2004. A note on maximizing a submodular set function 
subject to a knapsack constraint. Operations Research Letters, 32(1): 41–43.
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 Collaborative Multi-model Inference
 Activation Probability

• three factors


• the average performance of model links from  to 
all the others


• the average performance of model links targeted 
to  from all the others


• the cost of 

fi

fi

fi

f2

f1

f3

c( fi)

P1
i =

∑j≠i pj(gi,j)

|F | − 1

P2
i =

∑j≠i pj(gj,i)

|F | − 1



 Collaborative Multi-model Inference
 Activation Probability

• definition


 by normalization


• This activation probability can be regarded as a 
coefficient that is positively correlated with the 
gain when selecting a model.

w = 2/ min
i

c( fi)

Pi =
1 + P1

i − P2
i

wc( fi)
P1

i =
∑j≠i pj(gi,j)

|F | − 1
P2

i =
∑j≠i pj(gj,i)

|F | − 1
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 Algorithm

• select greedily w.r.t. activation probability under 
the cost budget


• activated models do exact inference while the 
others’ outputs will be predicted by the model link 
ensemble of activated sources.
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 Collaborative Multi-model Inference
 Algorithm

• select greedily w.r.t. activation probability under 
the cost budget


• activated models do exact inference while the 
others’ outputs will be predicted by the model link 
ensemble of activated sources.


• periodic re-profiling and re-selection


• By reasonably setting the period length and the 
proportion of data used for profiling, we can 
amortize the overheads of loading/unloading ML 
models to negligible.

for re-profiling for collaborative inference

Data Dimension

Time Dimension
for re-profiling

for collaborative inference

schedule At−1 schedule At

for loading/unloading models
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 Evaluation
 Implementation

• MLink implemented in Python based on TensorFlow 2.0


• We tested the integration on programs implemented with 
TensorFlow, PyTorch and MindSpore.
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• 7 models deployed
Table 1: ML Models on Hollywood2 Dataset

Task Class ML Model Input Modality Output Format Metric

Single-label Classification Gender Classification Audio 2-D Softmax Labels Acc.

Multi-label Classification Action Classification Video 12-D Sigmoid Labels mAP

Localization Face Detection Image 4-D Bounding Box IoU
Person Detection

Regression Age Prediction Image 1-D Scalar MAE

Sequence Generation Image Captioning Image Variable-length Text WER
Speech Recognition Audio



 Evaluation
 Datasets and Models

• Hollywood2


• reprocess original videos to obtain a mutli-modality dataset


• 7 models deployed
Table 1: ML Models on Hollywood2 Dataset

Task Class ML Model Input Modality Output Format Metric

Single-label Classification Gender Classification Audio 2-D Softmax Labels Acc.

Multi-label Classification Action Classification Video 12-D Sigmoid Labels mAP

Localization Face Detection Image 4-D Bounding Box IoU
Person Detection

Regression Age Prediction Image 1-D Scalar MAE

Sequence Generation Image Captioning Image Variable-length Text WER
Speech Recognition Audio



 Evaluation
 Datasets and Models

• Hollywood2


• reprocess original videos to obtain a mutli-modality dataset


• 7 models deployed
Table 1: ML Models on Hollywood2 Dataset

Task Class ML Model Input Modality Output Format Metric

Single-label Classification Gender Classification Audio 2-D Softmax Labels Acc.

Multi-label Classification Action Classification Video 12-D Sigmoid Labels mAP

Localization Face Detection Image 4-D Bounding Box IoU
Person Detection

Regression Age Prediction Image 1-D Scalar MAE

Sequence Generation Image Captioning Image Variable-length Text WER
Speech Recognition Audio



 Evaluation
 Datasets and Models

• Hollywood2


• reprocess original videos to obtain a mutli-modality dataset


• 7 models deployed
Table 1: ML Models on Hollywood2 Dataset

Task Class ML Model Input Modality Output Format Metric

Single-label Classification Gender Classification Audio 2-D Softmax Labels Acc.

Multi-label Classification Action Classification Video 12-D Sigmoid Labels mAP

Localization Face Detection Image 4-D Bounding Box IoU
Person Detection

Regression Age Prediction Image 1-D Scalar MAE

Sequence Generation Image Captioning Image Variable-length Text WER
Speech Recognition Audio



 Evaluation
 Model Links’ Performance

• pairwise model links are trained using 
1%, 5%, 10%, 20%, 48% data


• RMSprop optimizer with same hyper-
parameters (0.01 learning rate, 100 
epochs, 32 batch size)



 Evaluation
 Model Links’ Performance

• pairwise model links are trained using 
1%, 5%, 10%, 20%, 48% data


• RMSprop optimizer with same hyper-
parameters (0.01 learning rate, 100 
epochs, 32 batch size)


• model links significantly outperform 
knowledge distillation-based student 
models
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 Evaluation
 Semantic Correlation

• attention coverage has a positive correlation with the model linking 
performance


• Pearson correlation coefficients between outputs also show a positive 
correlation with the performance Table 2: IoU scores of model links targeted to the 

Pearson model and the Pearson correlations.

Source Action Age Face Gender

IoU (%) 39.4 38.9 58.5 39.0

Pearson 
Corr. 0.123 0.042 0.244 -0.053
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 MLink Ensemble

• dominance cases

Table 3: Dominance and mutual assistance cases in model link ensemble. Column titles are source models 
and row titles are target models. The dominant source’s performance is in bold.

Target \ Source Action Age Caption Face Gender Person Speech Ensemble

Action mAP (%) - 12.8 29.7 10.1 9.3 9.9 8.5 30.8

Face IoU (%) 11 11.2 0 - 10.3 31.9 0 32.2

Person IoU (%) 39.4 38.9 0 58.5 39.0 - 0 59.2

Age MAE 3.04 - 3.02 3.07 3.0 3.03 3.0 2.98

Gender Acc. (%) 92 92.1 92 92.1 - 92 92 92.3

pj(hA,fj) ≈ pj(gi*,j)
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Table 3: Dominance and mutual assistance cases in model link ensemble. Column titles are source models 

and row titles are target models. The dominant source’s performance is in bold.

Target \ Source Action Age Caption Face Gender Person Speech Ensemble

Action mAP (%) - 12.8 29.7 10.1 9.3 9.9 8.5 30.8

Face IoU (%) 11 11.2 0 - 10.3 31.9 0 32.2

Person IoU (%) 39.4 38.9 0 58.5 39.0 - 0 59.2
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 Evaluation
 Real Systems

• Smart Building 


• two days (one weekday & one weekend) 
of videos (1 frame per minute) from 58 
cameras


• 3 models deployed


• person counting, action classification, 
object counting



 Evaluation
 Real Systems

• City Traffic


• two days (one weekday & one weekend) 
of videos (1 FPS) from 10 cameras at road 
intersections


• 3 models deployed


• person counting, traffic condition 
classification, vehicle counting
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 Evaluation
 Baselines

• Standalone: selects models in ascending order of 
delay and runs models independently


• MTL: a multi-task learning approach


• DRLS: a deep reinforcement learning-based 
scheduling approach


• Reducto: a low-level feature difference-based frame 
filtering approach

• inference results of multiple models 
are required


• cost budget is too limited to run 
them all

Target Application



 Evaluation
 Video Analytics with Model Links

• GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone 

Method
Building (5/9 GB Mem.) City (5/9 GB Mem.)

Acc. (%) Time (ms) Acc. (%) Time (ms)

Standalone 33.3/66.7 30/74 33.3/66.7 55/121

MTL 53.3 32.8 61.3 32.5

DRLS 45.7/81.3 58.7/107 39.5/77.6 102/188

Reducto 91.8/96.9 45.7/89 84.1/95.3 64/127

MLink 94.1/97.9 39.3/84 94/97.4 62/125
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fast but accuracy is too low
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but too much overheads
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good trade-offs 
but only applicable to video streams
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• GPU Memory as the cost budget

Table 4: Comparisons of MLink, MTL, Reducto, DRLS, and Standalone 

Method
Building (5/9 GB Mem.) City (5/9 GB Mem.)

Acc. (%) Time (ms) Acc. (%) Time (ms)

Standalone 33.3/66.7 30/74 33.3/66.7 55/121

MTL 53.3 32.8 61.3 32.5

DRLS 45.7/81.3 58.7/107 39.5/77.6 102/188

Reducto 91.8/96.9 45.7/89 84.1/95.3 64/127

MLink 94.1/97.9 39.3/84 94/97.4 62/125 accurate, lightweight, 
and widely applicable
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• effective connections between black-box outputs of models can be built via 
our model linking approach



 Conclusion
 Take-home Messages

• effective connections between black-box outputs of models can be built via 
our model linking approach


• model link-based scheduling is a promising way towards cost-performance 
trade-off of multi-model inference
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