

InFi: End-to-End Learnable **Input Filter for Resource-Efficient Mobile-Centric Inference**

Mu Yuan¹, Lan Zhang¹, Fengxiang He², Xueting Tong¹, Xiang-Yang Li¹

¹University of Science and Technology of China ²JD Explore Academy

Outline

1. Introduction

2. Framework and Analysis

- 3. Design and Implementation
- 4. Evaluation

Mobile devices' increasing computing power

https://browser.geekbench.com/mobile-benchmarks

- Mobile devices' increasing computing power
- Growing demand for real-time sensor data analytics
 - Over **80%** of enterprise IoT projects will incorporate **AI** by 2022 https://www.visualcapitalist.com/aiot-when-ai-meets-iot-technology/

- Mobile devices' increasing computing power
- Growing demand for real-time sensor data analytics
 - Over **80%** of enterprise IoT projects will incorporate **AI** by 2022 https://www.visualcapitalist.com/aiot-when-ai-meets-iot-technology/
- AI models with the state-ofthe-art accuracy are too **computationally intensive**

- Mobile devices' increasing computing power
- Growing demand for real-time sensor data analytics
 - Over **80%** of enterprise IoT projects will incorporate **AI** by 2022 https://www.visualcapitalist.com/aiot-when-ai-meets-iot-technology/
- AI models with the state-of-the-art accuracy are too **computationally intensive**
- **Resource-efficiency** is important for mobile-centric <u>model</u> <u>inference</u> workloads

Model Inference: the process of running pre-trained AI models on new inputs

1.2 Input Redundancy

- Widespread redundancy in inputs
 - Type#1: **SKIP** the inputs that do not return valuable results

1.2 Input Redundancy

- Widespread redundancy in inputs
 - Type#1: **SKIP** the inputs that do not return valuable results

Video Stream

• Type#2: **REUSE** the results that previously computed

Motion Signals

Action Classification on Smartbands

1.3 Key Goals

• Robust feature discriminability

1.3 Key Goals

- Robust feature discriminability
- Theoretical filterability for application guidance
 - Tailored solutions bring the **cumbersome trial-and-error process**, due to the lack of theoretical analysis

Outline

1. Introduction

2. Framework and Analysis

- 3. Design and Implementation
- 4. Evaluation

2.1 SKIP as REUSE

• SKIP workflow

2.1 SKIP as REUSE

• SKIP workflow

• REUSE workflow

2.1 SKIP as REUSE

• Unify SKIP and REUSE approaches:

SKIP equals to REUSE the NONE output of input $\hat{0}$

2.2 End-to-End Learnability

- End-to-end learning casts complex processing components into **coherent connections** in neural networks and optimizes itself by applying back-propagation all through the networks.
 - Robust feature discriminability!

Filtering Performance

Our method always works.

2.2 End-to-End Learnability

- Embedding-Difference-Classification Framework
 - Training Phase:

metric learning paradigm

2.2 End-to-End Learnability

• Embedding-Difference-Classification Framework

1.3 Key Goals

- Robust feature discriminability
- Theoretical filterability for application guidance

2.3 Theoretical Analysis

- Learning problem formulation
- Filterability definition, based on hypothesis complexity comparison

 $\begin{array}{l} \textit{Definition 2 (Filterability). Let Complex(\cdot) denote the complexity} \\ \textit{measurement of a hypothesis family. We say that the inference} \\ \textit{workload is filterable, if } \textit{Complex}(\mathcal{G}) \leq \textit{Complex}(\mathcal{H}), \textit{where } h \in \mathcal{H} \textit{ and } (f_h \circ h) \in \mathcal{G}. \end{array}$

<u>Intuition</u>: If it is **easier to learn the filter** than to learn the inference model, the workload is **FILTERABLE**.

2.3 Theoretical Analysis

• Case1: low-confidence classification as redundancy

LEMMA 4. Let \mathcal{H} be a family of binary classifiers taking values in $\{-1,+1\}$. For $\mathcal{G} = \{sign(h(h+b))\}$ where $h \in \mathcal{H}, b \in \mathbb{R}$:

Non-Filterable

See our paper for detailed **formulation**, **proof and analysis**.

(3)

 $\mathcal{H} = \{\max(h_1, ..., h_l) : h_i \in \mathcal{H}_i, i = 1, ..., l\}. For \mathcal{G} = \{\max(h_i) : i \in J\}, where J \subseteq \{1, ..., l\}:$

 $\widehat{\mathfrak{R}}_{S}(\mathcal{G}) \leq \widehat{\mathfrak{R}}_{S}(\mathcal{H}).$

Filterable

• Case3: regression bound as redundancy

THEOREM 6. Let $p \ge 1$ and $\mathcal{H} = \{x \mapsto |h(x) - c(x)|^p : h \in H\}$. Assume that $|h(x) - c(x)| \le M$ for all $x \in X$ and $h \in H$. Then the following inequality holds: $\widehat{\mathfrak{R}}_{\mathcal{S}}(\mathcal{H}) \le pM^{p-1}\widehat{\mathfrak{R}}_{\mathcal{S}}(H)$.

Filterable

Outline

- 1. Introduction
- 2. Framework and Analysis

3. Design and Implementation

4. Evaluation

3.1 Architecture

Modality feature networks

- 5 modalities
 - Text
 - Image
 - Video
 - Audio
 - Sensor signal and feature map (vector)

3.1 Architecture

Modality feature networks

• 5 modalities

InFi: INput FIltering

- Audio
- Sensor signal and feature map (vector)

Task-agnostic classifier

• Fully-connected neural networks

3.2 Inference with InFi

• SKIP

Confidence threshold

• REUSE

- Cache entry: input embedding inference result
- Homogeneity score-based cache miss detection

Guo, Peizhen, et al. "Foggycache: Cross-device approximate computation reuse." Proceedings of the 24th annual international conference on mobile computing and networking. 2018.

• K-Nearest Neighbors algorithm for retrieval

3.3 Deployments

- Case#1: on-device
- Case#2: offloading
- Case#3: model partitioning

3.4 Implementation

- Feature networks and classifiers are built with TensorFlow 2.4
- TFLite are used to transform saved checkpoints into Java servable object for Android deployment
- Opensource: <u>https://github.com/yuanmu97/infi</u> **CO** InFi

Outline

- 1. Introduction
- 2. Framework and Analysis
- 3. Design and Implementation

4. Evaluation

4.1 Setup

- 12 Workloa
 - 5 dataset

road intersections

• 19 Workloads		Datasets	Modality	Inference Task
• I datasats			Video Clip	Action Classification (AC)
• 6 modulities	(Face Detection (FD)
• O modalities		Hollywood2	Image	Pose Estimation (PE)
				Gender Classification (GC)
			Audio	Speech Recognition (SR)
public	\langle		Text	Named Entity Recognition (NER
				Sentiment Classification (SC)
		ESC-10	Audio	Anomaly Detection (AD)
		UCI HAR	Motion Signal	Activity Recognition (HAR)
	ſ	МоСар	Motion Signal	User Identification (UI)
48x10 hours of videos (1FPS) collected from 10 cameras at \langle	\mathcal{C}	City Traffic	Video Stream	Vehicle Counting (VC)
	\prec		Feature Map	Vehicle Counting (VC-MP)

4.1 Setup

• 4 devices

- GPU server (one NVIDIA 2080Ti)
- Development board (NVIDIA JETSON TX2)
- Mobile phone (XIAOMI Mi 5)
- Smartwatch (HUAWEI WATCH)
- 3 baselines
 - FilterForward
 - Reducto
 - FoggyCache

MLSys '19 SIGCOMM '20 MobiCom '18

• SKIP

Filtering Rate @ 90% Inference Accuracy

• REUSE

InFi is widely applicable to inference workloads. InFi outperforms state-of-the-art approaches on ALL tasks.

• Sensitivity to training size

- Mobile-centric deployments
 - On-device, offloading, model partitioning
 - <u>Vehicle counting workload</u>

Throughput (FPS) / Bandwidth Saving (%)	YOLOv3	YOLOv3 + InFi-Skip	YOLOv3 + InFi-Reuse	YOLOv3-tiny
Inference Acc. (%)	100	90.3	90.5	67.9
On-device	3.2 / -	9.3 / -	27.2 / -	20.4 / -
Offloading	22.0 / -	55.2 / 66.5	77.2 / 91.1	225.3 / -
Model partitioning	24.5 / -	39.0 / 70.7	46.0 / 95.0	230.4 / -

- Mobile-centric deployments
 - On-device, offloading, model partitioning
 - <u>Pose estimation workload</u>

Throughput (FPS) / Bandwidth Saving (%)	OpenPose	OpenPose + InFi-Skip	OpenPose-light
Inference Acc. (%)	100	90.1	76.5
On-device	15.4 / -	18.0 / -	28.1 / -
Offloading	27.7 / -	31.5 / 18.9	98.5 / -
Model partitioning	29.2 / -	33.1 / 20.2	102.4 / -

High throughput but low accuracy

Throughput boost, Bandwidth saved Flexible resource-accuracy trade-off

4.3 Filterability

• Filterable vs. non-filterable

Filtering performance of FILTERABLE workloads is **BETTER** than NON-FILTERABLE ones.

4.4 Overhead

• Latency and energy costs on mobile platforms

Latency per Image (ms) Energy per Image (mJ)

See our paper for more evaluations of **feature discriminability**, **parameter sensitivity**, **temporal robustness**, and so on.

InFi Demo MobiCom 2022

MacBook Pri

Anthone of the presence of the

En 🗤 🛎 🐭

· 49 ₩ 5 1020 □

Take-Home Message

- Much **redundancy** exists in the input of inference workloads.
- We show that some workloads proved to be **filterable**, while some are non-filterable.
- Our 🗙 InFi supports **almost all** mobile-centric inference workloads. Try it :)

Thank You!

Opensource: https://github.com/yuanmu97/infi

InFi: End-to-End Learnable Input Filter for **Resource-Efficient Mobile-Centric Inference**

Mu Yuan¹, Lan Zhang¹, Fengxiang He², Xueting Tong¹, Xiang-Yang Li¹ ¹University of Science and Technology of China ²JD Explore Academy

