

Lab for Intelligent Networking and Knowledge Engineering

High-Quality Activity-Level Video Advertising

Mu Yuan¹, Lan Zhang¹, Zhengtao Wu^{1,2}, Daren Zheng¹ ¹University of Science and Technology of China ²Tencent Marketing Solution

Outline

Introduction

- Multimodal Content Embedding
- Activity-Level Video Advertising
- Evaluation
- Conclusion

0

2500

Billion-Dollar Business 2020 Video Advertising Market Volume

7500

5000

Тор 5		
1. 🚟 United States	US\$10,857m	
2. 🚰 China	US\$5,897m	
3. 💽 Japan	US\$2,153m	
4. 🔛 United Kingdom	US\$1,222m	
5. 🥅 Germany	US\$1,035m	

https://www.statista.com/outlook/218/109/video-advertising/united-states#market-globalRevenue

10,000 12,...

Video Advertising Formats

C Youlube	YouTube	Youlisbe
	San Multin	
	15	

Skippable In-Stream Ads Non-Skippable In-Stream Ads Video Discovery Ads

https://support.google.com/google-ads/answer/2375464?hl=en

Low CTR Compared with Traditional Ads

Youtube 0.38% << AdWords 3.17%

Soline Advertising Made Easy

https://blog.adstage.io/youtube-benchmarks-cpc-cpm-and-ctr https://www.wordstream.com/blog/ws/2016/02/29/google-adwords-industry-benchmarks

Content-Related Video Advertising

Content-Related Video Advertising

Activity-Level Video Advertising

Activity-Level Video Advertising Main Contributions

 The first non-predefined activity-level video advertising system;
 Effective algorithm for optimizing advertising service over content relevance, revenue and intrusiveness perception.

Activity-Level Video Advertising System Framework

Step#1: Find possible ads positions.

Activity-Level Video Advertising System Framework

Step#2: Assign ads properly.

Multimodal Content Embedding

- Activity-Level Video Advertising
- Evaluation
- Conclusion

Market Research @ Tencent

Market Research @ Tencent

150 Content-Targeted Advertising Demands

Key Frame Detection

Key Frame Detection

Key Frame Detection

Atom Feature Extraction

Activity Graph Representation

Activity Graph Representation

Activity Graph Representation

shutterstock.com • 712598362

- Introduction
- Multimodal Content Embedding
- Activity-Level Video Advertising
- Evaluation
- Conclusion

Activity Similarity

Interaction / Edge Similarity

Activity Similarity

Interaction / Edge Similarity

Scene: Airport

Ads Assignment

Ads Assignment: Intrusiveness Perception

Intrusiveness Distribution Function

$$\underline{g(t|S)} = 0 \quad , 0 \le t \le t_1$$

The intrusiveness of ads is the function over **viewing time** given an assigning output.

User Experience

Ads Assignment: Intrusiveness Perception

Intrusiveness Distribution Function g(t|S) = 0, $0 \le t \le t_1$ Before the first ad, the intrusiveness is 0. User Experience $u_{0} = 0$, $u_{0} \le t \le t_1$

~. ~ ~ ~ ~ ~ ~ ~

14000

12000

Ads Assignment: Intrusiveness Perception

Intrusiveness Distribution Function

$$g(t|S) = 0 \quad , 0 \le t \le t_1$$

$$g(t|S) = g(t_i) + \frac{\alpha}{s(p_i)} \quad , t_i < t \le t_{i+1}$$

The **incremental intrusiveness** of a new ad is inversely proportional to the content similarity.

Ads Assignment: Intrusiveness Perception

Intrusiveness Distribution Function

$$g(t|S) = 0$$
 , $0 \le t \le t_1$

$$g(t|S) = g(t_i) + rac{lpha}{s(p_i)}, t_i < t \le t_{i+1}$$

 $g(t|S) = g(t_i) + rac{lpha}{s(p_i)} - \gamma(t - t_i - rac{eta}{s(p_i)})$

The duration of high intrusive perception is also inversely proportional to the similarity score. User Experience

Ads Assignment: Intrusiveness Perception

Intrusiveness Distribution Function

$$g(t|S) = 0$$
 , $0 \le t \le t_1$

$$g(t|S) = g(t_i) + \frac{1}{s(p_i)}$$
, $t_i < t \le t_{i+1}$

$$g(t|S) = g(t_i) + rac{lpha}{s(p_i)} - rac{\gamma(t-t_i)}{\gamma(t-t_i)} + rac{\beta}{s(p_i)})$$

As the time goes on, the intrusiveness will decline and γ controls the descent speed.

User Experience

Ads Assignment: Trade-Off Model

41

Ads Assignment: Trade-Off Model

Ads Assignment: NMS-Greedy Algorithm

Trade-Off Model: Revenue Optimization under Intrusiveness Constraint

$$\max_{S \subseteq P} f(S) + \delta E(S)$$

s.t.
$$\int_{0}^{t_{max}} g(t|S) dt \leq B$$

Algorithm 1 NMS-Greedy algorithm for Equation 9. Require: key frame set X, ad set Y, intrusiveness budget BEnsure: assignments S

- 1: Initialize the value matrix $M_{N_y \times N_x}$, where $m_{ij} = r_i s(x_j, y_i)$.
- 2: Apply the kernel $K_{11 \times N_x}$ to M.
- 3: Apply the kernel $K_{2N_y \times N_k}$ to M.
- 4: Greedily select assignments with $\arg \max m_{ij}$ into S until $\int_0^{t_{max}} g(t|S) dt$ exceeds the intrusiveness budget B.

5: return S

Ads Assignment: NMS-Greedy Algorithm

Calculating the pairwise similarity to construct the value matrix.

Ads Assignment: NMS-Greedy Algorithm

Ads Assignment: NMS-Greedy Algorithm

K2: Avoiding successive ads within short interval.

Ads Assignment: NMS-Greedy Algorithm

&

ActVA: Extensibility

No need for activity-level labelled training data.

LoveShackFancy Irene Gown in Whi. HK\$9,262.70 revolve.com

Activity Graph Representation

- Introduction
- Multimodal Content Embedding
- Activity-Level Video Advertising

Conclusion

Experiment Setup

Semantic-Shot Key Frame Detection

Richer Textual Information High Accuracy with >10k FPS retrieval speed

Advertising Position Retrieval

Query

Top-3 Results

Richer Textual Information

High Accuracy with >10k FPS retrieval speed

NMS-Greedy Ads Assignment

(a) Average Assignment Value V.S. Intrusiveness Budget

Highest Value

Low Cost

(c) Subject Intrusiveness Evaluation

User Friendly

NMS-Greedy Ads Assignment

Intrusiveness Budget

Highest Value

Low Cost

(c) Subject Intrusiveness Evaluation

User Friendly

- Introduction
- Multimodal Content Embedding
- Activity-Level Video Advertising
- Evaluation
- Conclusion

Based on **atom features** and **activity-graph representation**, we can implement an efficient and scalable activity-level video advertising system.

Lab for Intelligent Networking & Knowledge Engineering

12 Faculty Members, 2 Post-Docs, 3 Secretaries; 7 with PhD from abroad

XiangYang Li

IEEE Fellow ACM Fellow ACM China Co-Chair

Yanyong Zhang

IEEE Fellow Prof. in Rutgers NSF Career

Panlong Yang CCF Dist Speaker Wireless Network Mobile Computing

Nikolaos M.Freris

USA NYU A.P. CPS, Algorithms, Distributed optimization Machine learning

System Software, Software **Optimization/Security**, Quantum software

YuBo Yan

Wireless/Passive Network, IntelliSense, IoT, SDR

Xuerong Huang

Master in HKBU **Research Assistant**

Doc. University of Oulu Passive Network Theories of Information and Coding

Ludi Xue

Research Assistant

Haisheng Tan

HK, Tsinghua Post-

Cloud Computing

Algorithms Analysis

Xin Guo

Edge Computing

Security of IoT

Doc

Bei Hua

High-Performance Computing **Edge Computing**

Hao Zhou

Xin He

Qingcheng Award

Privacy Protection

Lan Zhang

CCF, ACM China Doctor

Thesis Award, Youging

Data Understanding/Trading

Japan NTII Wireless Network Resource Management

Mu Yuan

University of Science and Technology of China School of Computer Science and Technology ym0813@mail.ustc.edu.cn

Lan Zhang

University of Science and Technology of China School of Computer Science and Technology zhanglan@ustc.edu.cn