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ABSTRACT

The resource efficiency of video analytics workloads is critical for
large-scale deployments on edge nodes and cloud clusters. Recent
advanced systems have benefited from techniques including video
compression, frame filtering, and deepmodel acceleration. However,
based on our year-long experience of operating a real-time video
analytics system on more than 1000 cameras, we identified a previ-
ously overlooked bottleneck of end-to-end concurrency: video de-
coding. To support concurrent video inference at scale, in this work,
we investigate a new task, named video packet gating, which selec-
tively filters packets before running a decoder. We propose a novel
multi-view embedding approach for video packets and present
PacketGame that has both theoretical performance guarantee and
practical system designs. Experiments on both public datasets and
a real system show PacketGame saves 52.0-79.3% decoding costs
and achieves 2.1-4.8× concurrency compared to original workloads.
Comparisons with four state-of-the-art complementary methods
show the superiority of PacketGame in end-to-end concurrency.

CCS CONCEPTS

•Computer systems organization→Real-time systems; •Net-
works→ Packet classification; • Computing methodologies

→ Concurrent algorithms.
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1 INTRODUCTION

The demand for video inference (AI-powered video analytics) on var-
ious sources (IP cameras [37], drones [47], mobile live streams [52],
and user-generated content [54]) has been growing rapidly. For ex-
ample, smart city systems apply computer vision models to videos
from tens of thousands of cameras for emergency response and
environmental protection [55]; Twitch reports over 100,000 concur-
rent live streams at any given time [9] and recent works propose
to improve video quality using neural super-resolution [26].

A typical video inference pipeline [19, 20, 31, 34, 53, 55] (see
Fig. 1) first parses videos from real-time network streams (e.g.,
RTSP) or the local file system (e.g., MP4), then decodes packets and
runs the AI model on RGB frames. Great efforts have been made
to optimize the efficiency of the video inference pipeline and we
divide them into four categories: (1) On-camera frame filtering [37]
filters frames at the beginning of network stream analytics. On
each camera, it selects frames based on the feature difference of
successive frames and only encodes selected frames for transmis-
sion to servers. (2) Video compression [49]. Unlike common video
encoding approaches [5] (e.g., H.264 and VP9) that are designed
for human visual perception, video compression aims to minimize
perception loss of inference models. Therefore it can effectively
improve video transmission efficiency. (3) On-server frame filter-
ing [19, 53] shares the same idea with on-camera frame filtering
but moves the filter to the server. After decoding videos, this series
of methods decide whether to perform inference on each frame,
based on the neural network classifier. (4) Model acceleration [8, 29]
focuses on the final inference phase of the pipeline. It improves
the computational efficiency of inference models by pruning and
fusing operators in deep neural networks.

System observation: concurrency bottleneck. At our univer-
sity, we have developed a real-time video analytics system that
processes more than 1000 cameras installed in the public area.
To support mobile modeling and emergency response function-
alities, we deployed state-of-the-art vision models [2, 28] and ap-
plied on-server frame filtering (InFi [53]) and model acceleration
(TensorRT [8]) techniques to improve resource efficiency. On our
edge GPU servers, these approaches effectively improve the system
throughput from 27 FPS to 3,500 FPS. However, during a one-year
operation of this system, we identified a previously overlooked
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Figure 1: Video inference pipeline.

bottleneck: concurrency level, i.e., the number of streams that can
be processed simultaneously. Experimental results show that the
end-to-end concurrency is limited by the video decoding module
(which takes encoded packets as inputs and outputs decoded RGB
frames). Using 12 CPUs, the decoding module can only support 35
streams (18 streams using one GPU), while the concurrency level
of the frame filtering and inference modules is orders of magnitude
higher, 143 and 3015, respectively. The reason is that the decoder
and the frame filter need to process all frames, while the inference
module only needs to process a much smaller fraction (<2%) of
frames passed through the filter.

In this work, we propose to add a selector module, named packet
gating (i.e., selecting a subset of necessary video packets to decode
from all streams), before the decoder in the video inference pipeline.
Unlike prior frame filtering approaches that leverage low-level or
learned features of RGB images [19, 37, 53], we attempt to make
selection decisions based on packet metadata by parsing video
streams. Packet gating can alleviate the computational overhead
not only of the inference model but more importantly of the video
decoder. Furthermore, packet gating does not require to modify
video encoding and transmission protocols and thus can support
commodity cameras and offline stored videos. The broad applica-
bility and pluggability are lacking in on-camera frame filtering and
video compression methods. Recall that packet gating is designed
to improve the concurrency level. Therefore, cross-stream coordina-
tion (i.e., selecting packets across multiple streams based on limited
decoding capabilities) is naturally an important consideration in
our design, while prior work paid less attention to it.

Challenges. Building an effective framework for multi-stream
packet gating involves two key challenges:

(1) Non-adaptive packet representation. It is challenging to develop
representations of video packets that can adapt to various inference
tasks and video content, especially before decoding, when only
some metadata of the video packet is available, e.g., video codec,
picture type, packet size, etc. Existing ideas we can refer to include
packet classification [17, 43], network traffic classification [27, 41],
and importance modeling of video frames [24, 50]. However, these
representation approaches are not designed for the general pipeline
of video inference. Experimental results show that they fail to
effectively adapt to different video inference applications (§ 3.1).

(2) Inefficient cross-stream coordination. To improve the concur-
rency level, gating packets for a single video stream is not enough.
For concurrent streams, the dynamic content and non-uniform
decoding overheads (caused by video codec settings) make stream-
agnostic resource schedulers largely sub-optimal. Experimental
results show that the performance of the canonical round-robin
policy significantly degrades as the number of concurrent streams
increases (§ 3.2).

PacketGame. Overcoming challenges posed by packet gat-
ing requires multiple technical advances. First, we formalize the
multi-stream packet gating problem and analyze the algorithmic
structure. We present a general framework and figure out the main
theory-practice gaps, namely packet sequence embedding and de-
coding dependency in GOP (group of pictures). Second, we design
a sliding window-based temporal estimator that predicts the selec-
tion probability of each stream using online feedback and decision
history. And we design a multi-view neural network that serves
as the contextual predictor. The contextual predictor learns to em-
bed packet sizes of independent and dependent frames as different
feature views. It also fuses the probability returned by the tem-
poral estimator for the final packet confidence. Third, taking the
confidence of packets from multiple streams, we propose a combi-
natorial optimizer and prove its 1−𝑐/𝐵 approximation ratio, where
𝐵 is the decoding budget and 𝑐 is the maximal decoding cost of a
packet. And based on the theory of multi-armed bandits [21, 58],
we prove a �̃� (

√
𝑇 ) regret bound of our overall algorithm, where 𝑇

is the number of decision rounds. We implement our theory-backed
algorithm, named PacketGame , as a plug-in between the packet
parser and decoder in the video inference pipeline.

We summarize three key contributions of this work as follows:
•We identify an overlooked system bottleneck of concurrency

level in the video inference pipeline. And we propose a new idea:
packet gating, which complements the decoding efficiency of exist-
ing methods.

•We present PacketGame , the first framework for multi-stream
packet gating. PacketGame leverages a lightweight temporal esti-
mator and contextual predictor to adaptively represent packets. We
design a combinatorial optimizer with a proven approximation ratio
for efficient cross-stream coordination. The overall performance of
PacketGame is proved to have an online regret bound.

•We implement PacketGame and conduct evaluations of four
inference tasks on public videos and a real system with 1108 cam-
eras. Experimental results show that PacketGame saves 52.0-79.3%
decoding costs and achieves 2.1-4.8× concurrency compared with
original workloads. Comparisons with four state-of-the-art com-
plementary methods [8, 37, 49, 53] show the superiority of Pack-
etGame in end-to-end concurrency and broad applicability.
This work does not raise any ethical issues.

2 BACKGROUND

This section first introduces our motivating use cases: widespread
video inference tasks with large-scale concurrency requirements
(§ 2.1). Then we discuss prior efforts for efficient video inference
(§ 2.2). Next, based on the experience of operating a real system and
quantitative analysis, we identify the bottleneck of the concurrency
level (§ 2.3). Then we propose a new idea, namely packet gating,
and claim the design scope and uniqueness (§ 2.4).

2.1 Motivating Use Cases

(1) Surveillance video inference. Surveillance cameras are ubiqui-
tous in today’s society and are widely used for security in homes
and public areas. AI models have empowered many analytics func-
tionalities on videos from tens of thousands of IP cameras in cities,
such as emergency response [55].
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Figure 2: Performance benchmarks on a server using 25FPS

1080p video streams.

(2) Mobile video inference. Various mobile devices like phones,
drones, and robots are equipped with cameras. Due to limited com-
munication and computing resources, many applications offload
video inference to the edge and cloud servers [38], e.g., construction
site management based on the camera worn by workers [3].

(3) Offline video inference. Video-sharing platforms store a huge
amount of videos (e.g., there are at least 800 million videos on
YouTube [11]). To improve the quality of services, various AI mod-
els are developed for functionalities including activity-level adver-
tising [54], content-based retrieval [45], and resolution enhance-
ment [26].

High-concurrency demand.With the increasing number of
hardware and users, regardless of the video source, these applica-
tions have a common demand for concurrent processing at scale.

2.2 Efficient Video Inference

Existing work explored mainly four types of approaches to improve
the efficiency of video inference. We introduce four representative
methods (also what we used for comparison experiments in § 6.5)
as follows:

(1) Video compression. Grace [49] proposes a video compression
algorithm that significantly saves the network bandwidth without
degradation of inference performance. Grace optimizes the codec
compression strategy for a target inference model by analyzing
both spatial frequencies and colors.

(2) On-camera frame filtering. Reducto [37] filters frames at the
camera side by adaptively setting a threshold on frame difference
based on low-level visual features (e.g., pixel and area). Reducto only
encodes and transmits selected frames, thus saving both network
bandwidth and backend inference computation.

(3) On-server frame filtering. InFi [53] uses a lightweight con-
volutional neural network to learn to filter decoded frames. Its
end-to-end learnability provides feature embedding with robust
discriminability for difference inference tasks.

(4) Model acceleration. TensorRT [8] implements many infer-
ence acceleration techniques for NVIDIA GPUs, including weight
quantization, layer fusion, parallel execution, etc.

2.3 Concurrency Bottleneck

Surprisingly, we find that most existing work focuses on latency
and throughput metrics for video inference, but the end-to-end
bottleneck of the concurrency level is under-explored.

Real-system experience.When developing a video analytics
system that is fed with more than 1000 concurrent video streams
from IP cameras, we applied TenosrRT [8] and InFi [53] to improve
the efficiency. As shown in Fig. 2a, TensorRT greatly improves the
throughput of the inference model (YOLOX [28]) from 27.7 to 753.9
FPS. And InFi achieves a 99% filtering rate while preserving over
90% accuracy. However, when it comes to real-time processing,
the video decoder becomes the end-to-end bottleneck. As shown
in Fig. 2b, using 12 CPUs / one TITAN X GPU on the edge can
only support 35 / 18 concurrent streams. The potential concurrency
level of the downstream filter and inference model is 143 and 3015,
respectively, orders of magnitude higher than that of decoding. The
reason is quite obvious: the decoder and filter need to process every
packet, while the inference model only runs on a small fraction of
the frames passed through the filter.

Expensive hardware solution. Deploying more hardware to
decode is a direct but expensive way to alleviate the bottleneck.
Considering 1080p 25FPS streams, dedicated decoder hardware
(e.g., Kiloview DC230 [4]) costs about $62.5 per stream. The most
advanced NVIDIA A100 [7] GPU costs $144 per stream per year
on Azure. And using Azure vCores CPU costs $132 per stream per
year. In addition to the cost of the hardware, deploying dedicated
decoders or more machines with CPUs / GPUs brings additional
communication overhead and considerable engineering work. Tak-
ing our system as an example, additionally spending more than
$100,000 per year for analyzing 1000 cameras is prohibitive for most
organizations. So we seek a pure software solution.

Quantitative condition. Beyond the above specific case, we
now give a quantitative condition that decoding is the concurrency
bottleneck: 𝑇𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 > (1 − 𝑟 )𝑇𝑑𝑒𝑐𝑜𝑑𝑒 , where 𝑟 ∈ [0, 1] is the
filtering rate and 𝑇𝑖𝑛𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ,𝑇𝑑𝑒𝑐𝑜𝑑𝑒 are throughput of inference
model and decoder, respectively. Note that, for different analytics
frequencies of downstream applications, we can directly configure
the decoder to decode according to a fixed frequency [5]. The fil-
tering rate depends on the video content and inference tasks. As
an empirical reference, previous works [19, 37, 53] report that the
potential filtering rate for various video inference tasks is around
80-99%. After applying model acceleration techniques [8, 29], the
condition commonly holds.

2.4 Design Space

Scope. We focus on the general ingest phase of video inference
workloads, i.e., from receiving videos to obtaining inference re-
sults (see Fig. 1). After inference, downstream applications might
use analytics results in various ways. Potential optimizations in
downstream applications are out of the scope of this work.

Design goals.We have four main design goals:
(1) Reduce decoding. First of all, we must reduce the decoding

overhead while preserving high inference accuracy.
(2) Support commodity cameras. Commodity cameras usually do

not support secondary programming. Supporting legacy cameras
and new commercial cameras is painstaking and even infeasible for
new video compression and on-camera frame filtering techniques.

(3) Support offline videos.Offline stored videos have been encoded
with a certain video codec. An ideal packet gating solution should
be codec-agnostic and require no additional transcoding overhead.
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Table 1: Feature comparison of our proposed packet gating

and complementary methods designed for efficient video

inference.

Methods Reduce
Decode

Commodity
Cameras

Offline
Videos

Cross-
Stream

Video Compression ✓ ✗ ✗ ✗

On-Camera FF ✓ ✗ ✗ ✗

On-Server FF ✗ ✓ ✓ ✗

Model Acceleration ✗ ✓ ✓ ✗

PacketGame ✓ ✓ ✓ ✓

(4) Cross-stream coordination. The packet gating strategy for
large-scale concurrent streams should have a global optimization
view and elastic scalability.

Core idea. To alleviate our identified bottleneck of concurrency
level and meet all the design goals, we propose a new idea: to add
a filter module for parsed packets, named packet gating, before the
decoder, which selects a subset of necessary video packets to decode
from all streams. From the perspective of the above four design
goals, Tab. 1 illustrates the novelty of our proposed multi-stream
packet gating approach PacketGame compared with existing meth-
ods. Note that, our proposed PacketGame has no conflict with the
listed existing methods and can work as a complement to them (see
Sec. 6.5).

3 CHALLENGES

Building an effective method based on our proposed idea of packet
gating involves two non-trivial challenges, namely non-adaptive
packet representation and inefficient cross-stream coordination.

3.1 Non-Adaptive Packet Representation

Since packet gating works just after the parser, only some metadata
of the video packet is available, such as video codec, picture type,
packet size, etc. So, in principle, we aim to build a mapping from
packet metadata to whether this packet is necessary to decode or
not. This work is the first step towards this objective. But from a
high-level view, packet gating is a packet decision model. We can
refer to ideas that have been explored in network management,
including packet classification [17, 43] and network traffic classi-
fication [27, 41]. And to ensure video delivery quality under lim-
ited network resources, several approaches [24, 50] are proposed
to selectively discard video frames that minimize the distortion
quantified by metrics such as PSNR (Peak Signal-to-Noise Ratio)
and MS-SIMM (Multiscale-Structural Similarity). Recent work [52]
also proposes a residual-based feature, that can be estimated using
video packet sizes, for the selective super-resolution task. How-
ever, experimental results show that these approaches either fail to
discriminate between necessary and redundant packets or cannot
adapt to various inference tasks. For example, setting the maximal
false-positive rate as 10%, residual-based selection results in only
6.1% true-positive rate while PacketGame achieves 76.6%. Con-
sidering a person counting inference task, we plot the packet size
and residual feature [52] of a video clip in Fig. 3. To discriminate
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Figure 3: Distribution of packet sizes and residual features

for person detection inference task.

packets with and without detected people requires a temporal and
non-linear representation of the packet size. And handcrafted resid-
ual features of necessary and redundant packets present highly
indistinguishable patterns.

⊲ Insight 1: Metadata-feedback hybrid representation of video
packets.

End-to-end learning can provide adaptability to data and task-
dependent representation [14, 46, 53]. Therefore, we leverage a
super-lightweight neural network to learn to predict with packet
metadata for various video content and inference tasks. On the
other hand, the downstream inference model can provide online
feedback for packet gating performance. So we propose to combine
metadata and feedback as a hybrid representation for video packets
(§ 5.1, 5.2).

3.2 Inefficient Cross-Stream Coordination

To maximize the overall analytics concurrency on multiple video
streams, we also need to carefully coordinate the packet decoding
resource across streams. Using a stream-agnostic (e.g., round-robin)
scheduler leads to significant performance degradation. We bench-
mark on our video analytics system using 1108 streams. Fig. 4a
shows the distribution of necessary inference for the person count-
ing task in one day. Given a video stream, we consider an inference
as necessary if the counting result is different from the latest num-
ber. The necessary inference for the person counting task presents
two (morning and evening) peaks that are consistent with common
sense. And we can see that the decoding capability (870 FPS) is
actually enough if we can perfectly identify necessary packets from
all streams (540.8 FPS at most). As shown in Fig. 4b, compared with
the optimal cross-stream strategy, the round-robin approach results
in sub-optimal performance quickly with an increased number of
streams, since it is agnostic to the necessity of decoding. For ex-
ample, given 25 FPS analytics frequency and 90% target accuracy,
the optimal strategy supports 2000 concurrent streams, while the
round-robin approach can support only 30 streams.

⊲ Insight 2: Gating packets with a global awareness of multi-
stream states.
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As an online decision process, we need to carefully trade-off be-
tween exploration and exploitation over all streams, using the con-
strained decoding resource. So we design a combinatorial algorithm
that considers both gating confidence (i.e., selection probability) and
heterogeneous decoding overheads as the stream state (§ 5.3).

4 FRAMEWORK

With these insights in mind, we define the multi-stream packet
gating problem and analyze its algorithmic structure (§ 4.1). We
propose a framework with a theoretical performance guarantee
(§ 4.2) and identify the key gaps from theory to practice (§ 4.3).

4.1 Formalization

Given𝑚 concurrent streams of videos, at each round 𝑡 , under the
decoding resource budget 𝐵, we select a subset of packets from the
arrived𝑚 packets to decode. We define 𝑐𝑡,𝑖 as the cost of decoding
the packet of stream 𝑖 at round 𝑡 . To illustrate the practical implica-
tion, we give a running example based on our experience on a video
analytics system, where we have𝑚=1000 concurrent RTSP streams
(25 FPS) from IP cameras. We divide one second into 25 rounds, so
we receive 1000 packets at each round. Common video codecs (e.g.,
H.264 and VP9) have two types of encoded frames, independent
(I-frame) and predicted (P/B-frame) [5], and their costs are heteroge-
neous. In our example, the edge server’s resource budget supports
decoding 11 I-frame packets or 32 P/B-frame packets at each round.
Let 𝑥𝑡,𝑖 denote the feature vector summarizing the information of
stream 𝑖 at round 𝑡 . In our case, it consists of the packet size and
picture type. Naturally and same as previous work [19, 37, 53], we
assume the online feedback of whether running an inference is
redundant is available. We define a set of Bernoulli variables 𝑟𝑡,𝑖
as the redundancy feedback of the packet from stream 𝑖 at round 𝑡 .
For example, consider the backend inference model as a detector of
abnormal behaviors. Then if a decoded frame returns as “normal”,
we set the feedback as 0; and if it returns as “abnormal”, we set the
feedback as 1. The objective is to maximize the number of decoded
packets that are necessary:

max
𝑇∑︁
𝑡=1

∑︁
𝑖∈𝑆A𝑡

𝑟𝑡,𝑖 s.t. ∀𝑡 ∈ [𝑇 ],
∑︁
𝑖∈𝑆A𝑡

𝑐𝑖,𝑡 ≤ 𝐵, (1)

where 𝑆A𝑡 denotes the set of packets selected by algorithm A at
round 𝑡 . Maximizing this objective function means that we select
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more necessary packets to decode, thus translating to less loss of
inference accuracy. Note that, in real-time operation, we have no
way of knowing false negatives (frames that should have been
decoded but were not) unless decoding every frame. Setting up
a parallel pipeline to periodically decode all frames and evaluate
the recall (similar to the fast-slow path design in LiveNet [36])
is a promising way to complement the selective feedback in our
formalization.

4.2 Overview

To solve such an optimization problem, we draw on theories of
multi-armed bandits [21, 58] and propose a framework PacketGame .
As shown in Fig. 5, PacketGame consists of three main modules.
First, a temporal estimator estimates the feedback expectation 𝜇𝑡 us-
ing the history of collected feedback. Second, a contextual predictor
combines information from both packet metadata and the calculated
feedback expectation. We propose to build a neural network-based
predictor 𝑓𝜃 (𝑥𝑡 , 𝜇𝑡 ) that predicts gating confidence. Third, given
the confidence and decoding costs of all streams, we need to solve
the constrained combinatorial optimization problem. The optimizer
returns the final packets 𝑆A𝑡 to decode. The decoder feeds selected
frames to the inference model and we use the inference outputs
to calculate the redundancy feedback 𝑟𝑡 . And temporal estimator
updates once new feedback arrives.

4.3 Theory-Practice Gaps

Our PacketGame framework has a good theoretical performance
guarantee (bounded online regret), see Sec. 5.4. To be practical in
real systems, however, we summarize two gaps that have to be
filled by careful design.

(1) Metadata embedding with inductive biases. The formalization
assumes an effective feature vector 𝑥 is given. In practice, we need
to design how to embed metadata with inductive biases [25] of
video packets. Take the packet size as an example, it depends on
many configurations, including codec algorithms, bit rates, picture
types, etc. Embedding prior knowledge (e.g., I and P/B frames have
different size patterns in our case) as inductive biases is critical to
neural network-based learning performance.

(2) Heterogeneous decoding overheads. The budget will be trivial
if item costs are uniform since a greedy selection is optimal. In our
case, decoding video packets in different GOPs (group of pictures)
incur heterogeneous overheads. As illustrated in Fig. 6, the costs
of current packets depend on the picture type, GOP size, decoding
dependencies, and previous decisions. For the first stream, decoding
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the current B-frame (bidirectional predicted picture) packet depends
on the first I-frame in GOP and the next P-frame. As we assume
that the first I-frame is skipped (not decoded), the current cost of
the first stream is 1𝐼 +1𝐵 +1𝑃 . While for the second stream, the cost
is 1𝐼 since the current I-frame has no dependency to decode. And
for the third stream, we need to trace back to the first decoded P-
frame, resulting in a 2𝑃 cost. We need to elaborate a combinatorial
optimizer that targets our packet gating task. For example, our
strategy needs to trade off this characteristic case: decoding the
current P frame or waiting for the next I frame, especially when
the GOP is large (typically in live streaming applications).

5 PACKETGAME DESIGN

This section introduces design of temporal estimator (§ 5.1), con-
textual predictor (§ 5.2), and combinatorial optimizer (§ 5.3) in
PacketGame framework. And we present the performance guaran-
tee of our overall algorithm (§ 5.4).

5.1 Temporal Estimator

The necessity of many inference tasks has temporal continuity. For
example, an abnormal event will persist in the video frame for a
period of time. And the live video will need resolution enhancement
during periods of network issues. Therefore, the online redundancy
feedback returned by the inference model can be useful for packet
gating.

Redundancy feedback. Like previous work of frame filter-
ing [19, 37, 53], we assume a redundancy measurement is available.
It is natural and prevailing: For object counting tasks, if the infer-
ence result is the same as the latest one, we regard it as redundant;
For detection tasks, if the IoU of bounding boxes is higher than a
threshold, the inference is redundant; For classification tasks, we
can set a subset of labels as redundant or check whether the label
changes. Once we receive redundancy feedback on our selected
packets, we record them for each stream.

Exploitation-exploration trade-off. We propose to set a tem-
poral window of length 𝑤 and calculate the probability of selec-
tion in next round by 𝜇𝑡,𝑖 = 1

𝑤

∑𝑤
𝑗=1 𝑟𝑡− 𝑗,𝑖 +

√︃
3𝑙𝑛𝑇
2𝑇𝑡,𝑖 , where 𝑇𝑡,𝑖

denotes the times of selecting stream 𝑖 in recent 𝑤 rounds, i.e.,
𝑇𝑡,𝑖 ←

∑𝑤
𝑗=1 1(𝑖 ∈ 𝑆𝑡− 𝑗 ). The first item, the average reward in

the temporal window, is for exploitation, i.e., the larger of recent
reward, the higher probability to select for the next selection. The
second item is for exploration. Intuitively, if we have only made a
small number of attempts to a stream, then it should be selected
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Figure 7: Architecture of contextual predictor. Colors repre-

sent different views of information.

with high priority. Related theoretical results [21] show that this
form of exploitation-exploration trade-off has a good performance
guarantee for online decision making. Our ablation experiments
(see Sec. 6.3) also show the effectiveness of the proposed temporal
estimator.

5.2 Contextual Predictor

Besides redundancy feedback from the past, metadata of present
packets can also be helpful. For example, a sudden fire will cause
relatively static frames to change significantly, causing the size of
encoded packets to fluctuate. Unlike traditional packet classification
tasks where we can manually design effective rules based on meta-
data such as the port number and size [41], the correlation between
the metadata and inference redundancy label is non-linear and
complex. So we design a neural network targeted to the metadata
of video packets.

Video encoding-related inductive biases. Due to different
encoding mechanisms [5], independent frames can be decoded
by the packet itself while predicted frames need to refer to other
packets. For example, a B-frame depends on the I-frame and the
next P-frame in a GOP (see the first stream in Fig. 6). Therefore, the
scale and distribution of packet sizes of these two types of packets
are different. On the other hand, intuitively, the size of the two
types of packets has different meanings. For independent frames,
the packet size reflects the richness of the current frame. And for
predicted frames, the packet size reflects the change compared to
the reference frame. This difference and complementarity in input
information inspire us to adopt multi-view learning [51], which
has achieved success in many learning tasks. And we use separate
embedding layers to learn features for two types of frames’ packet
sizes.

Sequential feature embedding. Like the temporal estimator,
we set a temporal window of length𝑤 . So the input is a𝑤-dimension
vector that records the most recent𝑤 packet sizes. We utilize 1D
convolution layers and a global max pooling layer as the feature
embedding block, which is a common practice for time-series classi-
fication [57]. In fact, we also explored other types of neural network
layers, including fully connected, recurrent, and LSTM layers. As
a proof of concept, we select the 1D convolution layer due to its
parameter efficiency and experimental performance. Then we con-
catenate two views of feature embedding and use a dense layer to
predict the redundancy label.
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Metadata-feedback fusion. Both the temporal estimator and
the neural network can predict the probability of redundancy. We
propose to fuse their predictions using dense layers after concate-
nating their outputs. Fig. 7 shows the architecture of our contex-
tual predictor, which has three views of input information, i.e.,
packet sizes of independent and predicted frames and the output
of temporal estimation. Our ablation experiments show that this
metadata-feedback fusion brings considerable improvement (§ 6.3).

Multi-task extension. Running multiple inference models on
the same video stream is a common demand for complex analytics
systems, such as smart cities [18]. Our neural network design can
be flexibly extended to support multi-task packet gating by setting
the length of the last dense layer as the number of tasks. Benefit-
ing from cross-task correlation, experimental results (see Fig. 11)
show that a multi-task contextual predictor outperforms single-task
ones. Similar results have also been reported by multi-task learning
work [56].

Parameter optimization. The supervision label of our contex-
tual predictor is redundancy feedback and we normalize it into 0-1
range, like previous work [19, 53]. And we adopt the binary cross-
entropy loss, formally 𝐿(𝑟,𝑦) = −(𝑟 log(𝑦) + (1 − 𝑟 ) log(1 − 𝑦)),
where 𝑟,𝑦 denote true and predicted labels, respectively. In princi-
ple, our proposed neural network can be optimized by any gradient
decent-based algorithms in an end-to-end manner. As a proof of
concept and considering the implementation efficiency, in this work,
we first train the contextual predictor (Python script) using offline
inference records. Then we transform the trained weights into a
binary runtime file and deploy it for real-time packet gating (no on-
line parameter update). We will explore learning-related advances
like online optimization and domain adaptation in future work.

5.3 Combinatorial Optimizer

Given the gating confidence of streams calculated by our contextual
predictor, we need to select a subset of packets under the decoding
budget. Recall that PacketGame is designed for concurrent ana-
lytics at scale, its computation efficiency and scalability must be
very high. Therefore, we propose to first greedily select packets
according to the ratio of confidence to cost, i.e., 𝑓𝜃𝑡 (𝑥𝑡,𝑖 , 𝜇𝑡,𝑖 )/𝑐𝑡,𝑖 .
Then using the remaining budget, we decode as many as possible
packets that the current prioritized packet refers to. The decoding
dependency in a GOP is in a form of a directed graph and can be
efficiently parsed. This task-specific combinatorial algorithm has
𝑂 (𝑚 log(𝑚)) computation complexity and linear scalability with re-
spect to the number of concurrent streams𝑚. Such a greedy-based
optimizer can be arbitrarily bad for general combinatorial problems.
Fortunately, the cost of decoding a video packet is approximately
fractional. And based on this characteristic, we can prove that it has
an approximation ratio of 1 − 𝑐/𝐵 where 𝐵 is the decoding budget
and 𝑐 is the maximal cost.

Lemma 1 (Approximation Ratio). For our approximately frac-
tional knapsack problem, the greedy algorithm has an approximation
ratio of 1 − 𝑐

𝐵
.

See Appendix A for the proof. In practice, 𝑐/𝐵 is typically lower
than 0.05, which translates to a 95% higher approximation of the
optimal results.

Algorithm 1:Multi-Stream Packet Gating Algorithm
input :Number of rounds 𝑇 , window length𝑤

1 for 𝑡 = 1, ...,𝑇 do

2 Parse packet features {𝑥𝑡,𝑖 }𝑚𝑖=1;
3 for 𝑖 = 1, ...,𝑚 do

4 𝑇𝑡,𝑖 ←
∑𝑤

𝑗=1 1(𝑖 ∈ 𝑆𝑡− 𝑗 );

5 𝜇𝑡,𝑖 ← 1
𝑤

∑𝑤
𝑗=1 𝑟𝑡− 𝑗,𝑖 +

√︃
3𝑙𝑛𝑇
2𝑇𝑡,𝑖 ;

6 𝑝𝑡,𝑖 ← 𝑓𝜃 (𝑥𝑡,𝑖 ,𝜇𝑡,𝑖 )
𝑐𝑡,𝑖

;

7 𝑃𝑡 ← indices sorted by descending order of 𝑝𝑡,𝑖 ;
8 𝑏𝑡 ← 0, 𝑘 ← 0, 𝑆𝑡 ← ∅;
9 while 𝑏𝑡 < 𝐵 do

10 𝑆𝑡 ← 𝑆𝑡 ∪ {𝑃𝑡 [𝑘]};
11 𝑏𝑡 ← 𝑏𝑡 + 𝑐𝑡,𝑖 ;
12 𝑘 ← 𝑘 + 1;
13 Decode all packets in 𝑆𝑡 and maximal packets that 𝑃𝑡 [𝑘]

refers to by remaining budget;
14 Receive redundancy feedback 𝑟𝑡,𝑖 ,∀𝑖 ∈ 𝑆𝑡 ;

5.4 Performance Guarantee

Based on the proposed three modules, Alg. 1 shows the overall
algorithm, where 𝜇 denotes the temporal estimator and 𝑓𝜃 denotes
the contextual predictor. The length of the temporal window is
set empirically and our experiments (Fig. 13) show its effect on
performance. In each round, Alg. 1 first parses packet features
(packet size and picture type) and predicts confidence 𝑝𝑡,𝑖 for each
stream. Next, PacketGame selects packets from 𝑚 streams and
sends them to the decoder. Then the inference model processes the
decoded frames and returns redundancy feedback to PacketGame .
Using Lemma 1 and existing results [21, 58], we can prove the regret
bound of Alg. 1.

Theorem 1 (Regret Bound). The regret of Alg. 1 in 𝑇 rounds is
at most �̃� (

√
𝑇 ).

See Appendix. A for the proof. Such a theoretical guarantee
is important for service-level objectives in real applications. Our
experimental results also show the effectiveness of Alg. 1 in practice,
e.g., 2.1-4.8× concurrency with over 90% inference accuracy under
the same budget.

Other possible design choices. In principle, any online decision-
making approach has the potential to work for our packet gating
problem, e.g., deep reinforcement learning (DLR) [15]. DRL has
achieved success in many networking and resource management
tasks [39, 40]. However, due to its combinatorial nature, the action
space is exponentially complex. Also, the requirement of fixed ob-
servation space and action space makes DRL approaches lack of
scaling elasticity. For example, when the number of concurrent
streams changes, we need to rebuild and retrain the deep neural
network. On the other hand, in this work, we formalize the packet
gating problem without considering query queueing and set a fixed
decoding budget for each round. Scheduling packets with two or-
thogonal dimensions, time and streams, is more complex and is our
future work.
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Table 2: Summary of Datasets and Inference Tasks

Dataset Video Source Inference Task

Campus1K IP Camera Person Counting (PC)
Anomaly Detection (AD)

YT-UGC Offline Video Super-resolution (SR)

FireNet Mobile Camera Fire Detection (FD)

6 EVALUATION

We evaluate PacketGame prototype on various video inference
tasks using both real analytics systems and public datasets. Our
highlights are as follows:

• PacketGame saves 79.3% decoding budgets and achieves 4.8×
concurrency level with over 90% inference accuracy, compared with
original video inference workloads (§ 6.3).

• PacketGame shows robust effectiveness with respect to in-
volved variables, including training size, window length, GOP size,
and video codec (§ 6.4).

• PacketGame outperforms complementary state-of-the-artmeth-
ods in improving end-to-end concurrency and has wider applicabil-
ity (§ 6.5).

6.1 Implementation

We implemented and open-sourced 1 PacketGame based on the
FFmpeg [5] and TensorFlow [13] libraries. To show that our design
does not depend on specific frameworks, we also open-source the
implementation based on MindSpore [6]. PacketGame parses bi-
nary videos using the 𝑎𝑣_𝑝𝑎𝑟𝑠𝑒𝑟_𝑝𝑎𝑟𝑠𝑒2 API and obtains the packet
size and picture type by accessing the 𝑠𝑖𝑧𝑒 and 𝑝𝑖𝑐𝑡_𝑡𝑦𝑝𝑒 attributes,
respectively. PacketGame trains the contextual predictor with the
RMSprop optimizer. If not mentioned, the same hyper-parameters
are used: 5 window length, 2 convolutional layers with 32 units,
128 dense units, 2048 batch size, and 0.001 learning rate.

6.2 Experimental Setup

Datasets and inference tasks. To evaluate the performance of
PacketGame , we selected three video datasets, as summarized
in Tab. 2. (1) Campus1K. This dataset comprises videos in h265
format collected from 1108 IP cameras deployed across our univer-
sity campus. The cameras captured footage at a frequency of 10
seconds per hour over a 24-hour period, resulting in a total of 4,432
(1108 × 10 × 24/60) hours of video. Fig. 8 shows the distribution
of these cameras on campus. We deployed a person detection [28]
model for mobility analysis (PC) and a pose-based action classifica-
tion [2] model for anomaly detection (AD). (2) YT-UGC [10]. This
large-scale dataset consists of 1179 videos in h264 format generated
by YouTube users. To simulate fluctuations in video quality caused
by bandwidth issues, we manually re-encoded video segments us-
ing lower bit rates. The dataset covers a diverse range of content
and video qualities. For the inference task, we deployed a super-
resolution model [1] on video clips to enhance video quality (SR).
(3) FireNet [33]. The FireNet dataset contains 47 videos with fire

1https://github.com/yuanmu97/PacketGame

Table 3: Overall efficiency improvement on four tasks with

90% target inference accuracy.

Method Budget Saving / Concurrency Level

PC AD SR FD

Temporal 52.6%/2.3x 71.8%/3.6x 75.8%/4.1x 50.5%/1.9x
Contextual 68.1%/2.9x 38.9%/1.7x 14.4%/1.1x 31.0%/1.5x
PacketGame 75.2%/3.6x 79.3%/4.8x 76.2%/4.3x 52.0%/2.1x
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Figure 8: Distribution of 1108 cameras in a campus real-time

video analytics system.

and 17 videos without fire, captured by mobile phones. Since the
original video clips only contain frames with or without fire, we
randomly inserted fire clips into videos without fire. The dataset
provides a challenging scenario for fire detection. For this inference
task, we deployed a fire detection model [33] (FD).

Ethical considerations. When using the Campus1K dataset, all
cameras were installed in public areas by the university, and we
obtained proper authorization to conduct experiments. The pro-
cessed packets and inference results, which include bounding boxes
and object classes, do not raise privacy concerns, as it does not in-
volve the collection or storage of sensitive or personally identifiable
information.

Baselines. To our best knowledge, PacketGame is the first
method for video packet gating, thus we consider the following
baselines and ablated versions of PacketGame for end-to-end com-
parisons: (1) Random. Randomly selects packets to decode under
the budget. (2) Temporal. Use our proposed temporal estimator only.
(3) Contextual. Use our proposed contextual predictor only (remov-
ing the temporal view). For complementary methods designed for
video inference optimization, we consider four SOTA approaches:
(4) Grace [49], A video compression approach. (5) Reducto [37],
an on-camera frame filtering approach. (6) InFi [53], an on-server
frame filtering approach. (7) TensorRT [8], a model acceleration
approach. Sec. 2.2 has already given a more detailed introduction
to these methods.

Devices. For the on-camera deployment experiment, we use a
mobile phone (XIAOMI Mi 5). And for all the other experiments,
we use an edge server that runs Ubuntu 20.04 with 12 Intel Core
i7-5930K CPUs 3.50 GHz and 1 NVIDIA TITAN X GPU.

6.3 Overall Performance

In evaluating the overall performance of PacketGame , we consider
two perspectives: offline and online.
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Figure 9: Offline filtering rate and inference accuracy on four tasks.
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Figure 10: Online inference accuracy over time with the same decoding budget (denoted by B, set to be the minimum value such

that the average accuracy of PacketGame exceeds 90%).

Offline. In the offline evaluation, we adopt a positive-to-negative
sample ratio of 1:1 and measure the filtering rate and inference accu-
racy. To analyze these metrics, we adjust the threshold of prediction
confidence from 0.0 to 1.0 and plot curves to illustrate the perfor-
mance. The optimal curves are computed using ground-truth labels.
Formally, let 𝑎, 𝑟 denote inference accuracy and filtering rate and let
𝑇𝑁 denote the ratio of true-negative cases (redundant packets) in
test sets. The formula of the optimal curve is 𝑎 = 1−max(𝑟 −𝑇𝑁, 0).
As depicted in Fig. 9, experimental results demonstrate that both
the temporal estimator and contextual predictor provide effective
filtering performance. And by combining both modules in Pack-
etGame , we achieve the best and nearly optimal performance. For
instance, with a target accuracy of 90%, PacketGame achieves fil-
tering rates of 51.8%, 56.5%, 57.7%, and 53.9% across different tasks.
The optimal filtering rate is 60%, PacketGame comes very close
to this optimal performance, showcasing its efficacy in accurately
filtering redundant packets.

Online. In the online evaluation, we focus on processing concur-
rent streams while adjusting the decoding budget. The contextual
predictor is trained using 80% randomly sampled data from each
dataset, following prior research practices [53]. With a target infer-
ence accuracy of 90%, we report the saved decoding budget when
processing 1000 streams concurrently. Tab. 3 illustrates the signifi-
cant decoding budget savings achieved by PacketGame , ranging
from 52.0% to 79.3%, while still achieving over 90% accuracy. No-
tably, the combination of the proposed temporal and contextual
modules is necessary, resulting in additional savings of 7.1%, 7.5%,
0.4%, and 1.5%. Furthermore, we report the maximal concurrency
level that can be achieved within the same decoding budget (875

FPS) while maintaining a 90% accuracy target. PacketGame ef-
fectively improves the concurrency levels across all four tasks,
achieving 2.1× to 4.8× concurrency.

The contributions of the temporal estimator and contextual pre-
dictor differ for each task. While the temporal estimator is less
effective for the PC task, it plays a dominant role in enhancing
performance for the SR task. This difference can be attributed to
the stable temporal pattern of SR videos, which is relatively unre-
lated to detecting people. Additionally, we analyze the inference
accuracy over time. Fig. 10 shows the accuracy on different time
segments, with the decoding budget denoted by 𝐵 and the average
accuracy indicated in the legend. The budget is set as the minimum
value that ensures the average accuracy of PacketGame exceeds
90%. We observe intuitive curves for the PC and AD tasks, where
selecting necessary packets is more challenging during the day
(segments 16-20) compared to the night (segments 4-8), given the
correlation between these tasks and human activities. In contrast,
the temporal patterns of SR and FD videos are randomly simulated,
resulting in relatively stable accuracy over time.

The offline and online evaluations provide a comprehensive
assessment of PacketGame , demonstrating its effectiveness in
accurately filtering redundant packets, significant decoding budget
savings, and improved concurrency levels across various tasks and
operational conditions.

Overheads. PacketGame serves as a plug-in in video inference
pipelines and we report its computing overheads in Tab. 4. We
consider three metrics: device-independent FLOPs (floating-point
operations, profiled by TensorFlow profiler API 𝑓 𝑙𝑜𝑎𝑡_𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛),
the latency per frame, and the energy per frame (on the mobile
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Table 4: Overheads on an edge server and a mobile phone.

Model FLOPs Latency per Frame
Edge/Mobile

Energy per Frame
Mobile

MobileNetV1 1137M 4/116ms 410mJ
InFi (image) 351M 0.8/16ms 15mJ
Reducto (area) N/A 0.9/20ms 22mJ

PacketGame 5K 7/154𝜇s <1mJ

phone). Experimental results show that computational costs of
PacketGame are orders of magnitude less, compared with a light-
weight model (MobileNetV1), the on-server frame filter (InFi [53]),
and the on-camera frame filter (Reducto [37]). PacketGame has
5K FLOPs, only 0.004% of MobileNetV1 (1137M). And for latency,
PacketGame costs 7 𝜇s per frame, 570× faster than MobileNetV1 (4
ms per frame). Although not designed for on-camera deployment,
running PacketGame on a mobile phone costs only 154𝜇s and less
than 1mJ energy. As a reference, InFi and Reducto cost 15 and 22
mJ per frame on the same mobile device. Therefore, in principle,
performing on-camera packet gating is feasible and energy efficient.

6.4 Micro-Benchmarks

Second, we explore the effects of the variables involved in Pack-
etGame design.

Multi-task extension. To enhance the capabilities of the con-
textual predictor module, we have extended our design to support
multi-task packet gating, as described in Sec. 5.2. For this extension,
we consider two inference tasks, PC and AD, on the Campus1K
dataset, treating them as separate domains. As depicted in Fig. 11,
we observe that directly utilizing contextual predictors trained on
the other domain leads to performance degradation. Specifically,
the filtering rate is 16.3% lower for PC and 6.9% lower for AD, ac-
companied by a reduction of 58 concurrent streams for PC and 26
concurrent streams for AD. However, when employing the multi-
task extended predictor, which leverages shared representations
across tasks [56], we achieve improved performance. The multi-task
extended predictor demonstrates a 2.1% higher filtering rate for PC
and a 1.7% higher filtering rate for AD, resulting in an increase of 6
concurrent streams for PC and 9 concurrent streams for AD.

This improvement in performance can be attributed to the ben-
efits of shared learning across multiple tasks. y training the con-
textual predictor simultaneously on multiple tasks, the model can
leverage useful representations that are shared across domains.
This shared representation learning enhances the overall learning
capacity of the model and facilitates better performance for both
PC and AD tasks.

Sensitivity to the training size. The size of the training sample
has a significant impact on the efficiency of building PacketGame .
To assess this sensitivity, we randomly sampled different ratios
(0.01, 0.1, 0.2, 0.5, 0.8) of data and evaluated the classification accu-
racy on the same test set. As depicted in Fig. 12, the test accuracy
consistently increases with an increasing training size, indicating
the positive correlation between training sample size and the ef-
fectiveness of our proposed contextual predictor. Except for the
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Figure 11: Multi-task extension of the contextual predictor.
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Figure 12: Test accuracy w.r.t. different sizes (1%, 10%, 20%,

50%, 80%) of training samples on four tasks.

extreme case where only 1% of the samples were utilized for train-
ing, both the contextual predictor (without the temporal view) and
the complete PacketGame model demonstrate their ability to ef-
fectively learn from the available data. These findings underscore
the importance of having a relatively sufficient amount of data for
training PacketGame effectively, as it enables the model to capture
diverse patterns and generalize well to unseen test data.

Effects of the window length parameter. The window length
parameter in PacketGame plays a crucial role in determining both
the packet gating performance and computational efficiency. To
investigate its effects, we conducted experiments using different
window lengths on the person counting task. The results, as illus-
trated in Fig. 13, reveal that the performance of both the contextual
and temporal modules initially improves with an increasingwindow
length and then starts to decline. Simultaneously, as the window
length increases, the computational throughput decreases. Thus, a
trade-off exists between accuracy and efficiency. We identified that
a window length of 5 strikes a good balance between accuracy and
efficiency, serving as the default choice. However, it is important
to note that the optimal window length may vary depending on
the specific application and requirements. Further exploration and
fine-tuning of the window length parameter can be conducted to
tailor PacketGame to different use cases and performance goals.

Video codec. The input streams processed by packet gating are
generated by the video encoder. To examine the impact of different
video codecs on PacketGame , we transcoded the original H.264
videos from the YT-UGC dataset using three different codecs [5]:
H.265, JPEG2000, and VP9. Fig. 14a illustrates the clear differences
in feature (picture type and packet size) distributions among the
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JPEG2000, VP9) on YT-UGC dataset.

different codecs. It is worth noting that, since the JPEG2000 codec
produces streams with independent frames only, the contextual
predictor of PacketGame removes the view of independent frames
for this particular codec. Experimental results demonstrate that
PacketGame exhibits robust performance (91.2-95.2% test accuracy)
across all tested codecs, showcasing its versatility and adaptability
to various video codecs commonly used in practice.

The findings regarding sensitivity to training size, the effects of
the window length parameter, and the performance across different
video codecs provide insights into the practical considerations and
flexibility of PacketGame in real-world applications. By under-
standing and leveraging these factors, practitioners can optimize
the performance and customization of PacketGame to suit their
specific requirements and video analytics environments.

Extreme cases. To thoroughly investigate the capabilities and
limitations of PacketGame , we conducted experiments considering
two extreme cases that push the boundaries of the system.

(1) Extreme-low bit rate. In this scenario, we transcoded 1080p
videos using an exceptionally low bit rate, such as 100K. We ob-
served that, at such low bit rates, the packet size information be-
comes indistinguishable for most tasks. Consequently, the two
views of packets in the contextual predictor of PacketGame no
longer provide meaningful insights and tend to generate near-
random guesses. However, this limitation has no effect on the
temporal estimator, which relies on the temporal correlation of
inference results. Therefore, even in extreme-low bit rate scenar-
ios, PacketGame can still operate effectively by leveraging the
temporal estimator to make accurate selections.

Table 5: ComparingPacketGamewith complementary video

inference methods on the person counting task. The target

accuracy is 90%.

Method Filtering Rate Num. of Streams

Original 0% 1

TRT 0% 30
TRT+Grace 0% 30
TRT+Reducto 78.4% 162
TRT+InFi 85.1% 35

PacketGame 79.3% 5
TRT+PacketGame 79.3% 169

(2) Extreme-large GOP. In live streaming applications, it is com-
mon to encounter situations where the Group of Pictures (GOP)
length is exceptionally large, such as 300. Experimental results in-
dicate that the view of independent packets becomes less effective
in these cases because the observations do not change frequently
within such lengthy GOPs. However, we found that the other two
views utilized by PacketGame , namely the contextual predictor
and the temporal estimator, are not affected by extremeGOP lengths.
Therefore, the overall performance of PacketGame remains robust
and stable across different GOP settings.

These extreme cases shed light on the adaptability and resilience
of PacketGame in challenging scenarios. While extremely low bit
rates may limit the effectiveness of certain packet views, the tempo-
ral correlation of the packet sequence continues to provide valuable
information. Similarly, in cases of large GOP lengths, although the
view of independent packets may be less informative, the other
views maintain their effectiveness. These findings highlight the
robustness of PacketGame in diverse operational conditions and
demonstrate that our hybrid design that combines metadata and
feedback is quite necessary to handle extreme scenarios commonly
encountered in real-world environments.

6.5 Comparisons with Complementary Video

Inference Optimization Methods

To demonstrate the uniqueness and effectiveness of our proposed
packet gating approach, we compare it with four video inference
optimization methods: Grace [49], Reducto [37], InFi [53], and Ten-
sorRT (TRT) [8]. PacketGame is complementary to these methods:
the optimization space of packet gating is overlapped with frame
filtering [37, 53] and is orthogonal to video compression [49] and
model acceleration [8]. While each of these methods contributes
to improving different aspects of video inference, our focus is on
enhancing end-to-end concurrency performance. TensorRT (TRT),
for instance, improves the inference speed from 27.7 FPS to 753.9
FPS, which translates to a 30× concurrency improvement. On the
other hand, Grace reduces the decoding cost but does not involve
frame filtering. Consequently, its concurrency level remains limited
by the inference speed, i.e., TRT+Grace also results in supporting
30 concurrent streams. Reducto, although it improves the number
of concurrent streams from 30 (TRT only) to 162 (TRT+Reducto),
requires modified cameras and does not support offline videos. InFi
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reduces inference costs, but its concurrency bottleneck shifts to
the decoding module, resulting in only 5 more concurrent streams.
In contrast, our proposed packet gating approach is specifically
designed to enhance the concurrency level by selecting packets
for processing before decoding, thus reducing the costs associated
with both the decoder and the inference model. As illustrated in
Tab. 5, PacketGame outperforms these existing methods in terms
of improving the number of concurrent video streams. Compared
to the original method, PacketGame achieves a 5× concurrency.
When combined with TRT, PacketGame supports an impressive
169 concurrent streams without requiring any modifications to the
video sources. This highlights the effectiveness of PacketGame in
enabling high levels of concurrency and scalability while maintain-
ing compatibility with existing video inference methods.

7 DISCUSSION

Security auditing. Our approach demonstrates the feasibility of
establishing a mapping from parsed packet metadata to whether
an inference model should be executed. While this advancement
offers significant benefits in terms of efficiency and resource uti-
lization, it also introduces a potential security risk. Specifically,
attackers who gain access to traffic metadata can potentially ex-
tract privacy-sensitive inference results, such as the detection of
abnormal events occurring in certain locations. To mitigate this
security risk, it is crucial to prioritize the protection of both RGB
frames and packet-level metadata during transmission for secure
video inference. By ensuring the confidentiality of both the visual
content and the associated metadata, we can prevent unauthorized
access and mitigate the potential exploitation of sensitive inference
results by malicious entities.

Modality extension. In addition to supporting video packets,
our design has the potential for extension to support other types
of packet sequences. Recent work [53] has explored the general-
ization of frame filtering to input filtering and has presented a
comprehensive framework that enables the filtering of various data
modalities, including audio, motion sensor signals, and wireless
signals. This modality extension represents an exciting avenue for
future research and development of PacketGame . By broadening
the scope of supported modalities, we can create a more versatile
and adaptable system that caters to a wider range of multimedia
applications and scenarios. The ability to filter and process diverse
types of data streams in a unified manner opens up opportunities
for enhanced inference efficiency.

8 RELATEDWORK

Video decoding acceleration. The industry has developed hard-
ware and software solutions for video acceleration. Kiloview [4] de-
veloped various models of hardware decoders, e.g., DC230 and D260,
which supports concurrently decoding multiple high-resolution
videos. Intel oneVPL [12] provides OS-independent APIs for decod-
ing videos across heterogeneous hardware (CPUs, integrated and
discrete GPUs). NVDEC [7] is a hardware decoder contained in
NVIDIAGPUs. The accelerated graphics engine of NVDEC supports
faster video decoding. In academia, several work [48, 49] propose
inference-aware compression for source videos by analyzing frame
features and gradients of neural networks. Since the compression

strategies are designed for inference (rather than human percep-
tion), these methods can achieve higher compression ratios and
thus faster decoding. Recent work [32, 35] explore specialized deep
neural networks on partially decoded frames which can also alle-
viate the decoding overhead. PacketGame is complementary to
these efforts: the accelerated decoder increases the budget in our
formalization.

Frame filtering. Efforts to improve efficiency in video analytics
have led to the adoption of frame filter [19, 37, 53], a prevailing ap-
proach for removing redundant frames that do not contain relevant
content for inference. Various strategies have been proposed in ex-
isting literature, leveraging low-level features [37] and learned deep
features [19, 53]. All of them utilize RGB frame-level information
as the input for filtering, so they must be applied after the decoder.
PacketGame is the first attempt that inserts the filtering stage be-
tween the parser and decoder in the video inference pipeline. While
there is some overlap between frame filtering and our proposed
packet gating mechanism in terms of optimization space, they can
still be applied complementarily.

Inference acceleration. Extensive work has been conducted
on inference acceleration [23] within the field of deep learning.
Various approaches have been explored, such as neural network
pruning [42], low-rank factorization [22], quantization [16], and
knowledge distillation [30]. TensorRT [8] implements many GPU-
focused acceleration techniques, and they have gained significant
popularity in production environments. While these advancements
in model acceleration are valuable, it is important to note that they
are orthogonal to PacketGame . In fact, these techniques reinforce
the necessity of our proposed packet gating: with the increase of
inference throughput, the bottleneck is further solidified in the
decoding stage (§ 2.3). Therefore, the introduction of packet gating,
as proposed in our research, becomes crucial.

9 CONCLUSION

In this paper, we identified that the end-to-end concurrency bottle-
neck is limited by video decoding and gave a quantitative condition.
We proposed packet gating that selectively filters packets before
running the video decoder. And we presented PacketGame , a
general framework that is backed by both theoretical performance
guarantees and practical system designs. Extensive evaluation us-
ing real systems and public videos shows that PacketGame can
effectively improve the concurrency level of various video inference
tasks.
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A PROOFS

Proof of Lemma. 1.

Given predictions 𝑓𝜃 (𝑥, 𝜇) as the item values and 𝑐𝑖 as item costs,
maximizing the accumulated value under the cost budget 𝐵 is a
knapsack problem. Greedily selecting items w.r.t. the ratio of value
over cost can be arbitrarily bad for general cases. Fortunately, the
cost of decoding is approximately fractional, e.g., 𝑐𝑡,1 = 1𝐼 + 1𝐵 + 1𝑃
in Fig. 6. Intuitively, when the remaining budget is lower than the
next cost, we can still decode partial frames. And we assume the
value of decoding reference frames follows the same fraction. Under
this practical assumption, we can prove the approximation ratio as
follows.

Proof. Let𝑉A denote the value returned by our algorithm. Con-
sider two optimal solutions: opt for our approximately fractional
knapsack problem and opt𝐹 for the rigorous fractional knapsack
problem. Then we have 𝑉A ≤ opt ≤ opt𝐹 . Define 𝑏 as the remain-
ing budget, 𝑟 as the value-cost ratio of the next item, and 𝑐 as the
maximal cost of items, so 𝑏 < 𝑐 . And since we select items greedily
w.r.t. the value-cost ratio, 𝑉A ≥ (𝐵 − 𝑏)𝑟 .

𝑉A
opt𝐹

=
𝑉A

𝑉A + 𝑏𝑟
(2)

=
1

1 + 𝑏𝑟
𝑉A

(3)

≥ 1
1 + 𝑏𝑟

(𝐵−𝑏 )𝑟
(4)

=
1

1 + 𝑏
𝐵−𝑏

(5)

= 1 − 𝑏

𝐵
(6)

≥ 1 − 𝑐

𝐵
. (7)

So the approximation ratio: 𝑉Aopt ≥
𝑉A
opt𝐹
≥ 1 − 𝑐

𝐵
. □

Proof of Theorem. 1.

We consider our formalized problem as a𝑚-armed combinatorial
contextual bandit problem, where the total number of rounds 𝑇 is
known. At the round 𝑡 ∈ [𝑇 ], we observe the context consisting
of both metadata and feedback estimation: {𝑥𝑡,𝑖 , 𝜇𝑡,𝑖 |𝑖 ∈ [𝑚]}. Our
algorithm selects a subset 𝑆𝑡 of streams (arms) to decode and re-
ceives the feedback (reward) 𝑟𝑡,𝑆𝑡 = {𝑟𝑡,𝑖 |𝑖 ∈ 𝑆𝑡 }. We define regret
as follows:

𝑅𝑇 = E

[
𝑇∑︁
𝑡=1
(𝑟∗𝑡 − 𝑟𝑡,𝑆𝑡 )

]
, (8)

where 𝑟∗𝑡 = max𝑆⊆2[𝑚] E
[
𝑟𝑡,𝑆

]
is the maximal expected reward at

round 𝑡 .

Proof. Using Lemma. 1, we have a (𝛼, 𝛽)-approximation oracle,
where 𝛼 = 1 − 𝑐/𝐵 and 𝛽 = 1. Based on this oracle and using
existing results [21, 44, 58] we can derive a �̃� (

√
𝑇 ) regret bound

under certain theoretical assumptions. □
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