
InFi: End-to-end Learnable Input Filter for Resource-efficient
Mobile-centric Inference

Mu Yuan

ym0813@mail.ustc.edu.cn

University of Science and Technology

of China

Hefei, China

Lan Zhang
∗

zhanglan@ustc.edu.cn

University of Science and Technology

of China

Hefei, China

Fengxiang He

hefengxiang@jd.com

JD Explore Academy

Beijing, China

Xueting Tong

tongxueting@mail.ustc.edu.cn

University of Science and Technology

of China

Hefei, China

Xiang-Yang Li

xiangyangli@ustc.edu.cn

University of Science and Technology

of China

Hefei, China

ABSTRACT
Mobile-centric AI applications put forward high requirements for

resource-efficiency of model inference. Input filtering is a promis-

ing approach to eliminate the redundancy in the input so as to

reduce the cost of inference. Previous efforts have tailored effective

solutions for many applications, but left two essential questions

unanswered: (1) theoretical filterability of an inference workload to

guide the application of input filtering techniques, thereby avoiding

the trial-and-error cost for resource-constrained mobile applica-

tions; (2) robust discriminability of feature embedding to allow input

filtering to be widely effective for diverse inference tasks and input

content. To answer these questions, we first provide a generic for-

malization of the input filtering problem and theoretically compare

the hypothesis complexity of inferencemodels and their input filters

to understand the optimization potential of applying input filter-

ing. Then we propose the first end-to-end learnable input filtering

framework that covers most state-of-the-art methods and surpasses

them in feature embedding with robust discriminability. Based on

our framework, we design and implement an input filtering system

InFi supporting six input modalities. InFi is the first to support

text and sensor signal inputs and model partitioning deployments

widely adopted by under-resourced mobile systems. Comprehen-

sive evaluations confirm our theoretical results and show that InFi
outperforms strong baselines in applicability, accuracy, and effi-

ciency, owing to its generality and end-to-end learnability. InFi can
achieve 8.5× throughput and save 95% bandwidth, while keeping

over 90% accuracy, for a video analytics app on mobile platforms.

∗
Lan Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00

https://doi.org/10.1145/3495243.3517016

ACM Reference Format:
Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li.

2022. InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-

centric Inference. In The 28th Annual International Conference On Mobile
Computing And Networking (ACMMobiCom ’22), October 24–28, 2022, Sydney,
NSW, Australia. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3495243.3517016

1 INTRODUCTION
The increased computing power of mobile devices and the growing

demand for real-time sensor data analytics have created a trend

of mobile-centric artificial intelligence (AI) [39, 43, 45, 47, 67]. It

is estimated that over 80% of enterprise IoT projects will incorpo-

rate AI by 2022 [16]. The on-device inference of computer vision

models brings us increasingly rich real-time AR applications on

mobile devices [8]. A judicious combination of on-device and edge

computing can analyze videos taken by drones in real-time [66].

The resource efficiency of model inference is critical for AI applica-

tions, especially for resource-limited mobile devices and latency-

sensitive tasks. However, many AI models with state-of-the-art

accuracy [4, 15, 30] are too computationally intensive to perform

high-throughput inference, even when they are offloaded to edge

or cloud servers [73].

For resource-efficient inference, one direct and popular way is to

eliminate the redundancy of the deep model itself via accelerating

and compressing techniques [1, 22, 25, 52, 55, 57, 59]. In this work,

we follow another series of approaches [5, 9, 19, 20, 33, 40] that

attempt to filter the redundancy in the input data. Fig. 1 shows four

examples of input redundancy in mobile-centric AI applications.We

call this series of approaches input filtering and classify them into

two categories: SKIP and REUSE. (1) SKIP methods [5, 33] aim to

filter input data that will bring useless inference results, e.g., images

without faces for a face detector (Fig. 1a) and audios without a valid

command for a speech recognizer (Fig. 1b). FilterForward [5] trains

a binary classifier and sets a threshold on classification confidence

to filter input images. (2) REUSE methods [19, 20] attempt to filter

input whose results can reuse the previous inference results, e.g.,

motion signals of the same action (Fig. 1c) and video frames with

the same vehicle count (Fig. 1d). FoggyCache [19] maintains a

cache of feature embedding and inference results of previous inputs

and searches reusable results in the cache for newly arrived data.

https://doi.org/10.1145/3495243.3517016
https://doi.org/10.1145/3495243.3517016
https://doi.org/10.1145/3495243.3517016


ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

[x, y, w, h]

None

Photos

(a) Face detection on mobile
phones.

Audios

Hey, play
some music.

Uh...

(b) Speech recognition offloaded
on cloud.

Motion Signals 

Walking

Walking

Laying

(c) Action classification on smart-
bands.

Video Stream

Ti
m

e

...

...

4
3
...

...
4

Feature 
Maps

(d) Vehicle counting partitioned
between drones and edges.

Figure 1: Input redundancy inmobile-centric AI applications.
Gray squares indicate redundant inference results: (a) no de-
tected face, (b) invalid recognized speech, (c) previous clas-
sification result can be reused, (d) latest count result can be
reused.

Input filtering usually works as a necessary prelude to inference

for under-resourced mobile systems. Moreover, compared with

model optimizations, input filtering provides more flexible trade-

offs between the accuracy and efficiency, e.g., FilterForward can

adjust the threshold in SKIP and FoggyCache can adjust the cache

size in REUSE. Although prior efforts have designed effective input

filters for a range of applications, two important and challenging

questions remain unanswered:

1. Theoretical filterability analysis for the guidance of ap-
plying input filtering tomobile-centric inference:Not all infer-
ence workloads have the optimization potential by using input fil-

tering. Sometimes, to achieve the required accuracy, a SKIP/REUSE

filter is more costly than the original inference. Characterizing the

conditions under which the filter has to cost more to be accurate

is thus essential to input filtering. Previous efforts study the input

filtering problem from an application-oriented perspective. They

start from the observation of redundancy and propose bespoke

input filtering solutions without further analyzing the relation be-

tween their inference workloads and input filters. Without theoret-

ical guidance and explanation, though they delivered accurate and

lightweight input filters for specific workloads, the trial-and-error

process of designing input filters for other workloads is still very

cumbersome and may fail next time, especially for resource-scarce

mobile systems.

2. Robust feature discriminability for diverse tasks and
modalities in mobile-centric inference: A discriminative fea-

ture representation [68] is critical to filtering performance, since it

directly determines the accuracy of making SKIP decisions and find-

ing REUSABLE results. The accuracy is critical to most AI inference

workloads, especially for anomaly detection tasks [7, 74]. If anomaly

events are incorrectly filtered, the efficiency gains will be meaning-

less. This is a challenge to the discriminability of features. Recent

work [40] shows that for different workloads, the discriminability

of low-level features is different, e.g., area feature works better for

counting while edge feature works better for detection. Most exist-

ing filtering methods leverage handcrafted features [19, 20, 40] or

pre-trained neural networks as feature embedding [5], and implic-

itly assume that these features are sufficiently discriminative for the

target workloads. However, mobile applications usually have high

diversity in input content and inference tasks. The dependency on

pre-trained or handcrafted features leads to unguaranteed discrim-

inability to these diversities. Our experiments (§ 6.2) show that, for

an action classification workload, neither a SKIP method using the

pre-trained feature [5] nor a REUSE method using the handcrafted

feature [19] can work effectively. The feature embedding should be

obtained in a workload-agnostic and learnable manner, rather than

tailored case by case.

To answer these questions, we first provide a generic formaliza-

tion of the input filtering problem and conditions of valid filters.

Then we theoretically define filterability and analyze the filterabil-

ity of two most common types of inference workloads, namely

classification and regression, by comparing the hypothesis com-

plexity [34, 50] of the inference model and its input filter. Instead of

designing bespoke solutions for narrowly-defined tasks, we propose

the first, to our best knowledge, end-to-end learnable framework

which unifies both SKIP and REUSE approaches [5, 19, 40]. The

end-to-end learnability provides feature embedding with robust

discriminability in a workload-agnostic manner, thus significantly

broadens the applicability. Based on the unified framework, we de-

sign an input filtering system, named InFi, which supports both SKIP
and REUSE functions. In addition to image, audio and video inputs,

InFi complements existing techniques in supporting text, sensor

signal, and feature map inputs. Previous methods are typically de-

signed for a certain deployment, e.g., inference offloading [19, 40].

InFi flexibly supports common deployments in mobile systems, in-

cluding on-device inference, offloading, and model partitioning [75].

In summary, our main contributions are as follows:

•We formalize the input filtering problem and provide validity

conditions of a filter. We present the analysis on complexity com-

parisons between hypothesis families of inference workloads and

input filters, which can guide and explain the application of input

filtering techniques.

•We propose the first end-to-end learnable input filtering frame-

work that unifies SKIP and REUSE methods. Our framework covers

most existing methods and surpasses them in feature embedding

with robust discriminability, thus supporting more input modalities

and inference tasks.

•We design and implement an input filtering system InFi. Com-

prehensive evaluations on workloads with 6 input modalities, blue

12 inference tasks, and 3 types of mobile-centric deployments show

that InFi has wider applicability and outperforms strong baselines

in accuracy and efficiency. For a video analytics application on a

mobile platform (NVIDIA JETSON TX2), InFi can achieve up to

8.5× throughput and save 95% bandwidth compared with the naive

vehicle counting workload, while keeping over 90% accuracy.

2 INPUT FILTERING
This section formalizes the input filtering problem and provides

the conditions of a “valid” input filter for resource-efficient mobile-

centric inference.



InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

0. Inference Workload 1. Redundancy Measurement

2. Input Filter

Execute 

Apply 

3. Inference with an Input Filter

Redundant?
YES

NO

Figure 2: Overview of input filtering for inference workload.

2.1 Problem Definition
An input filtering problem needs to determine what input is re-

dundant and should be filtered for a given inference model. First,

the definition of an input filtering problem is based on its target

inference model. Let X,Y denote the input space and the label

space of the target model, respectively. Define 𝑐 : X → Y, named

the target concept [64], which provides the ground-truth label for

each input. Then training a target model is to search for a function

ℎ from a hypothesis family [64]H using a set of training samples

𝑆 = {(𝑥𝑖 , 𝑦𝑖 )}𝑚𝑖=1, where (𝑥1, ..., 𝑥𝑚) are sampled independently

from X with an identical distribution 𝐷 and 𝑦𝑖 = 𝑐 (𝑥𝑖 ). Using the
above notations, we define the learning problem of the target in-

ference model ℎ by (X,Y, 𝑐,H , 𝐷, 𝑆). Step 0 in Fig. 2 shows the

original inference workflow of a trained model ℎ, which takes an

input from X and returns an inference result 𝑦 ∈ Y.
Next, given a trained inference model ℎ, its redundancy mea-

surement function can be defined as:

Definition 1 (Redundancy Measurement). A redundancy measure-

ment 𝑓ℎ : Y → Z of a model ℎ is a function that takes only the

output of ℎ as input and returns a score that indicates whether the

inference computation is redundant.

Such measurements are common in practice. For example, based

on the output of a face detector the inference computation that

returns no detected face is redundant and can be skipped, and we

can set the score 𝑧 = 0; Otherwise, 𝑧 = 1. Formally, 𝑦 ↦→ 1( |𝑦 | > 0),
where𝑦 is the output set of detected faces, 1(·) is the indicator func-
tion. For REUSE cases, if the inference result of an action classifier

on a new query is the same as previously cached, the computation

is redundant, and we can define 𝑓ℎ (𝑦) = 1(𝑦 ∉ 𝑌𝑐𝑎𝑐ℎ𝑒𝑑 ). Note that,
this definition of redundancy measurement does not depend on

ground-truth labels, since our focus is not the accuracy but to opti-

mize the resource efficiency of a deployment-ready target model

with trusted accuracy by eliminating its redundant inference. Step

1 in Fig. 2 shows how redundancy measurement works.

Given the inference workload ℎ and redundancy measurement

𝑓ℎ , as Step 2 in Fig. 2, learning an input filter is defined as search-

ing for a function 𝑔 from a hypothesis family G using a set of

training samples 𝑆 ′ = {(𝑥𝑖 , 𝑧𝑖 )}𝑛𝑖=1, where (𝑥1, ..., 𝑥𝑛) are sampled

independently with a distribution𝐷 ′ and 𝑧𝑖 = 𝑓ℎ (ℎ(𝑥𝑖 )). This learn-
ing problem is denoted by (X,Z, 𝑓ℎ ◦ ℎ,G, 𝐷 ′, 𝑆 ′), i.e., 𝑔’s target
concept is the composite function of 𝑓ℎ and ℎ.

Inference with an input filter. Once an input filter 𝑔 is trained,

the inference workflow changes from Step 0 to Step 3 in Fig. 2. The

input filter 𝑔 becomes the entrance of the workload, which predicts

the redundancy score 𝑧 of each input 𝑥 . If not redundant, the infer-

ence model ℎ will be directly executed on the input. Otherwise, we

apply the
ˆℎ(𝑥), which has two typical implementations: 1) SKIP:

skipping the inference computation on the input 𝑥 and returning

a NONE result; 2) REUSE: reusing previously cached inference

results. Sec. 3 will analyze SKIP and REUSE approaches theoreti-

cally, which can guide the usage of them. Sec. 4 will introduce our

framework that unifies SKIP and REUSE approaches, and show how

to determine whether it is redundant based on the predicted score

and how to reuse previous results. Sec. 5 will present the detailed

design of our input filtering system.

2.2 Validity Conditions
After defining an input filter, we now give the conditions that

a “valid” input filter needs to meet for resource-efficient mobile

inference. The input filter is designed to balance the resource and

accuracy: filtering more inputs can save more resources, but it also

brings a higher risk of incorrect inference results.

Inference accuracy.With an input filter, the inference result

𝑦 for input 𝑥 is returned either by executing ℎ(𝑥) or applying
ˆℎ(𝑥). Following previous work [5, 19, 40], the correctness of the

result 𝑦 refers to its consistency with the exact inference result by

ℎ(𝑥), rather than the ground-truth label. An input filter’s inference

accuracy 𝐴𝑐𝑐 is defined as the ratio of correct results obtained by

the inference workload with the filter.

Filtering rate. The filtering rate, denoted by 𝑟 , is defined as the

ratio of filtered inputs (i.e., the ratio of results obtained by applying

ˆℎ), which is also an important performance metric considered in

previous work [5, 19, 40].

Overall cost. The overhead of an inference workload with an

input filter needs to take 𝑔, ℎ and
ˆℎ into consideration. Let 𝐶 (·)

denote the cost of a certain function. For the cost of computation

(e.g., runtime), the average cost per input changes from 𝐶 (ℎ) into
𝐶 (𝑔) + (1 − 𝑟 )𝐶 (ℎ) + 𝑟𝐶 ( ˆℎ). The communication cost (e.g., band-

width) depends on the deployment of the mobile-centric inference

workload. On-device inference does not involve communication,

while the overall bandwidth cost of offloading [5, 40] and model

partitioning [75] deployments becomes the original cost multiplied

by (1 − 𝑟 ) < 1.

Based on the above metrics, we define an input filter as “valid” if
it satisfies two conditions: 1)Accurate enough:𝐴𝑐𝑐 > 𝑇𝐴𝑐𝑐 , where
𝑇𝐴𝑐𝑐 is the threshold of acceptable inference accuracy. 2) Reduced
overhead: the overall cost with an input filter is lower than the

original cost. If we aim to reduce the computation cost, we need

(𝐶 (𝑔) + (1−𝑟 )𝐶 (ℎ) +𝑟𝐶 ( ˆℎ))/𝐶 (ℎ) < 1, i.e., 𝑟 > 𝐶 (𝑔)/(𝐶 (ℎ) −𝐶 ( ˆℎ));
If we aim to reduce the communication cost, we only need 𝑟 > 0.

3 FILTERABILITY ANALYSIS
As mentioned in Sec.1, not all inference workloads have the opti-

mization potential by using input filtering techniques. Given an

inference workload in a mobile-centric AI application, is there a

valid input filter? To answer this question, based on our formaliza-

tion of the input filtering problem, we first define the filterability of

an inference workload. Then we analyze filterability in three typical

inference cases in SKIP settings, and discuss uncovered cases.



ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

3.1 Definition of Filterability
Given the learning problem (X,Y, 𝑐,H , 𝐷, 𝑆) of an inference model

and the learning problem (X,Z, 𝑓ℎ◦ℎ,G, 𝐷 ′, 𝑆 ′) of its input filter, to
simplify the analysis, we make assumptions as follows: (1) 𝐷 = 𝐷 ′

i.e., the training samples follow the identical distribution; (2) 𝑆 ′ =
{(𝑥𝑖 , 𝑧𝑖 )}𝑥𝑖 ∈𝑆 , i.e., the two learning problems share the same inputs

in their training samples. But they are supervised under different

labels. The inference model ℎ is supervised by 𝑦𝑖 = 𝑐 (𝑥𝑖 ), while the
input filter 𝑔 is supervised by 𝑧𝑖 = (𝑓ℎ ◦ ℎ) (𝑥𝑖 ). Our intuitive idea
for filterability is that, if an inference workload is filterable, the

learning problem of its input filter should have lower complexity

than the learning problem of its inference model. Formally, we

define filterability as follows:

Definition 2 (Filterability). Let𝐶𝑜𝑚𝑝𝑙𝑒𝑥 (·) denote the complexity

measurement of a hypothesis family. We say that the inference

workload is filterable, if 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 (G) ≤ 𝐶𝑜𝑚𝑝𝑙𝑒𝑥 (H), where ℎ ∈
H and (𝑓ℎ ◦ ℎ) ∈ G.

Since the hypothesis family cannot be determined based only

on input and output spaces, we use the family of the input filter’s

target concept 𝑓ℎ ◦ ℎ as G.
Now we can characterize the theoretically achievable accuracy

and overhead of the input filter for a given inference model by

leveraging computational learning theory [50]. It has been proven

that, the more complex the hypothesis family is, the worse the

bounds of generalization error. On the other hand, the hypothesis

complexity of neural networks has a positive correlation with the

number of parameters. For example, let𝑊, 𝐿 denote the number

of weights and the number of layers in a deep neural network.

The VC-dimension [65] (a measurement of the hypothesis complex-

ity) is 𝑂 (𝑊𝐿 log(𝑊 ) [23]. In the case of the same layer structure,

the more parameters the higher the inference overhead of neural

networks. The generalization error bound and the number of param-

eters correspond to the accuracy and efficiency metrics in validity

conditions (§ 2.2), respectively, although they are not strict quantifi-

cation. Therefore, if an inference workload is filterable, whose input

filter has lower hypothesis complexity, we are confident to obtain a

valid filter with sufficiently high accuracy and lower overhead than

the inference model. Next, we will analyze the complexities of the

hypothesis family of inference workload ℎ and its input filter 𝑔 in

different cases.

3.2 Low-confidence Classification as
Redundancy

Considering an inference workload, where the inference model

is a binary classifier ℎ that returns the classification confidence,

and the redundancy measurement regards the classification re-

sult with confidence lower than a threshold 𝑡 as redundant, i.e.,

𝑓ℎ (𝑦) = sign(𝑦 > 𝑡). Confidence-based classification is very com-

mon in mobile AI applications, such as speaker verification. We

adopt the empirical Rademacher complexity [34], denoted by ℜ̂𝑆 (·),
as the complexity measurement, which derives the following gen-

eralization bounds [50]:

Theorem 3 (Rademacher complexity bounds). Let H be a
family of hypothesis taking values in {−1, +1}. Then for any 𝛿 > 0,

with probability at least 1 − 𝛿 , the following holds for all ℎ ∈ H :

𝑅(ℎ) ≤ 𝑅(ℎ) + ℜ̂𝑆H) + 3
√︂

log(2/𝛿)
2𝑚

, (1)

where 𝑅(ℎ) and 𝑅(ℎ) denote the empirical and generalization errors,
and𝑚 is the number of training samples.

This theorem shows that the higher a hypothesis family’s em-

pirical Rademacher complexity, the worse the bounds of its gen-

eralization error. The classification confidence-based redundancy

measurement creates two hyperplanes parallel to ℎ = 0: points be-

tween them are considered redundant, and points outside them are

considered not redundant. Thus, the hypothesis family of the input

filter’s target concept has the form: G = {sign(ℎ(𝑥) (ℎ(𝑥) + 𝑏))},
where ℎ ∈ H and 𝑏 ∈ R. Then we have proven the following

lemma, which shows that the discussed inference workload is not
filterable.

Lemma 4. LetH be a family of binary classifiers taking values in
{−1, +1}. For G = {sign(ℎ(ℎ + 𝑏))} where ℎ ∈ H , 𝑏 ∈ R:

ℜ̂𝑆 (G) ≥ ℜ̂𝑆 (H) . (2)

Proof. By definition, ℜ̂𝑆 (H) = 𝐸𝜎 [supℎ∈H ( 1𝑚
∑𝑚
𝑖=1 𝜎𝑖ℎ(𝑥𝑖 ))]

and ℜ̂𝑆 (G) = 𝐸𝜎 [supℎ∈H,𝑏∈R ( 1𝑚
∑𝑚
𝑖=1 𝜎𝑖sign(ℎ(𝑥𝑖 ) (ℎ(𝑥𝑖 ) + 𝑏))],

where Rademacher variables 𝜎𝑖 ∈ {−1, +1}. By fixing 𝑏 = 2,

ℜ̂𝑆 (G) ≥ 𝐸𝜎 [ sup

ℎ∈H,𝑥𝑖 ∈𝑆
( 1
𝑚

𝑚∑︁
𝑖=1

𝜎𝑖sign(ℎ(𝑥𝑖 ) (ℎ(𝑥𝑖 ) + 2))]

= 𝐸𝜎 [ sup

ℎ∈H,𝑥𝑖 ∈𝑆
( 1
𝑚

𝑚∑︁
𝑖=1

𝜎𝑖sign(ℎ(𝑥𝑖 ))] = ℜ̂𝑆 (H),

where we used the fact that sign(ℎ(𝑥𝑖 ) + 2) ≡ 1. □

Multi-class classifiers can be treated as a set of confidence scoring

functions, one for each class. The above lemma can also be applied

to derive that multi-class classifiers using such a confidence-based

redundancy measurement are not filterable either.

3.3 Class Subset as Redundancy
Considering the inference model ℎ as a multi-class mono-label

classifier andY = {𝑦1, ..., 𝑦𝑙 }. Then its hypothesis familyH has the

form:H = {max(ℎ1, ..., ℎ𝑙 ) : ℎ𝑖 ∈ H𝑖 , 𝑖 ∈ [1, 𝑙]}, where ℎ𝑖 returns
the probability of the 𝑖-th class. The redundancy measurement

checks whether the predicted class belongs to a specific subset,

i.e., 𝑓ℎ (𝑦) = 1(𝑦 ∈ Y ′), where Y ′ ⊆ Y. It is common in mobile

applications to select only a subset of labels for use. For example,

when deploying a pre-trained common object detector [41] on

a drone for traffic monitoring, we only care about the labels of

vehicles and pedestrians, while considering other labels like animals

and trees as redundancy. With the class subset-based redundancy

measurement, the hypothesis family of the input filter’s target

concept has the form: G = {max(ℎ𝑖 ) : 𝑦𝑖 ∈ 𝑌 ′}. We have proven

the following lemma, which shows that the discussed inference

workload is filterable:

Lemma 5. LetH1, ...,H𝑙 be 𝑙 hypothesis sets in RX , 𝑙 ≥ 1, and let
H = {max(ℎ1, ..., ℎ𝑙 ) : ℎ𝑖 ∈ H𝑖 , 𝑖 = 1, ..., 𝑙}. For G = {max(ℎ𝑖 ) : 𝑖 ∈



InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

𝐽 }, where 𝐽 ⊆ {1, ..., 𝑙}:

ℜ̂𝑆 (G) ≤ ℜ̂𝑆 (H) . (3)

Proof. For any 𝑗 = 1, ..., 𝑙 :

ℜ̂𝑆 (H) =
1

𝑚
𝐸
𝜎
[ sup
𝑥𝑖 ∈𝑆

𝜎𝑖 max

ℎ𝑘 ∈H𝑘

(ℎ𝑘 (𝑥𝑖 ))]

≥ 1

𝑚
𝐸
𝜎
[ sup
𝑥𝑖 ∈𝑆

𝜎𝑖 max

𝑗 ∈𝐽
(ℎ 𝑗 (𝑥𝑖 ))] = ℜ̂𝑆 (G).

□

The equation holds only if the max-value scoring function is in

the selected subset for all 𝑥𝑖 ∈ 𝑆 , which means that without loss

of inference accuracy, the optimal filterable ratio in the data is 0.

Except in this extreme case, we can think that the complexity of

learning the input filter is strictly lower.

3.4 Regression Bound as Redundancy
Considering a bounded regression model ℎ, whose outputs are

bounded by 𝑀 ∈ R that |ℎ(𝑥) − 𝑐 (𝑥) | ≤ 𝑀 (recall that 𝑐 is the

target concept) for all 𝑥 ∈ 𝑋 . The redundancy measurement checks

whether the returned value is larger than a threshold, i.e., 𝑓ℎ (𝑦) =
1(𝑦 > 𝑇 ). As an example, face authentication on mobile devices

usually requires the coordinates of the detected face to be within

the specified range. Then learning the target concept of input filter

becomes learning a regression model whose outputs are bounded

by 𝑇 , where 𝑇 < 𝑀 . We also adopt the empirical Rademacher

complexity and have the following theorem [50]:

Theorem 6. Let 𝑝 ≥ 1 andH = {𝑥 ↦→ |ℎ(𝑥) − 𝑐 (𝑥) |𝑝 : ℎ ∈ 𝐻 }.
Assume that |ℎ(𝑥) − 𝑐 (𝑥) | ≤ 𝑀 for all 𝑥 ∈ 𝑋 and ℎ ∈ 𝐻 . Then the
following inequality holds: ℜ̂𝑆 (H) ≤ 𝑝𝑀𝑝−1ℜ̂𝑆 (𝐻 ).

Since𝑀 > 𝑇 , this theorem shows that the upper bound of ℜ̂𝑆 (G)
is tighter than the upper bound of ℜ̂𝑆 (H). So we can be confident

that the bounded regression inference workload discussed is filter-
able.

3.5 Discussions
Guidance for applying SKIP. The above results are derived in

SKIP settings. Our experiments (§ 6.3) show that the theoretically

filterable cases achieve significantly better filtering performance

than the cases that are not filterable. So our filterability analysis can

reveal the optimization potential by using SKIP filters, and explain

the filtering performance.

Other inference tasks. Classification and regression are the

most common inference tasks, and the three redundancy measure-

ments discussed are widely adopted [5, 71, 72]. However, there are

some inference tasks that are challenging to measure the hypoth-

esis complexity, like reinforcement learning [13] and structured

learning [12]. Besides, their redundancy measurements are typi-

cally ill-defined. We believe that our problem formalization and

analysis approach are general, based on which we will analyze the

filterability of other tasks in the future work.

Characteristics of REUSE. For REUSE approach, we cannot

determine the hypothesis family of the input filter’s target concept.

Here we only give one necessary condition: the inference result is

Figure 3: Unified and end-to-end learnable framework for
both SKIP and REUSE input filtering.

discrete or can be discretized. For example, classification and count-

ing models return discrete outputs. But continuous localization

coordinates of detection models cannot be reused directly, unless

reusing detection results with high IoU are regarded as correct,

which is equivalent to discretizing the outputs.

4 FRAMEWORK
In this section, we first propose a novel input filtering framework

that unifies SKIP and REUSE approaches. Then we discuss how

existing approaches are covered by our framework and their limi-

tations. Finally we present the key design, end-to-end learnability,

and advantages it brings.

4.1 SKIP as REUSE
We unify SKIP and REUSE approaches based on the idea that:

SKIP equals to REUSE the NONE output of ℎ(®0).
Suppose we have an all-zero input ®0 and apparently its inference

result can be interpreted as NONE. Then given a new input 𝑥 , if it

is similar to ®0 in the feature space, we can REUSE the cached NONE

result, i.e., we SKIP the inference computation. The key to reuse

is to measure the semantic similarity between the current input

and previously cached ones. However, it is difficult to accurately

measure semantic similarity directly based on the raw input. As

Step 1 in Fig. 3 illustrated, our framework first computes the feature

embedding of each raw input. Taking a pair of inputs 𝑥, 𝑥 ′, then our

framework applies a difference function 𝑑 on their corresponding

embeddings 𝑒, 𝑒 ′ and feeds the result into a classifier that predicts a
single scalar 𝑧. Under this framework, for SKIP, we fix 𝑥 ′ as an all-

zero input ®0, then the process degenerates to a binary classification

task that takes 𝑥 as input and returns the prediction 𝑧. In this way,

our framework unifies SKIP and REUSE approaches, with only

difference in interpretation of the value 𝑧. For REUSE, we interpret

𝑧 as the distance between two inputs. For SKIP, we interpret 𝑧 as

the probability that input 𝑥 is not redundant.

4.2 Inference with an Input Filter
For the inference phase, as shown in Step 2 in Fig. 3, SKIP and

REUSE filters only differ in the inputs of the difference function 𝑑 .

(1) SKIP: Inference with a SKIP filter is the same as serving a binary



ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

classifier. We can set a threshold on the predicted redundancy score

𝑧 to determine whether to skip. (2)REUSE: Inference with a REUSE
filter needs to maintain a key-value table, where a key is a feature

embedding and its value is the corresponding inference result. For

an arrived input 𝑥 , the trained feature embedding network returns

its embedding 𝑒 and the distances 𝑧 between 𝑒 and cached keys are

computed by the difference function 𝑑 and the trained classifier.

Then we can leverage classification algorithms, e.g., KNN, to obtain

the reusable cached results.

4.3 Sub-instance Approaches
Here we explain how our framework covers three state-of-the-art

input filtering methods [5, 19, 40] that will be used for comparison

in our evaluations.

Sub-instance1: FilterForward (FF) [5] is a SKIP method for

image input. FF uses a pre-trained MobileNet’s intermediate output

as the feature embedding. Then it trains a “micro-classifier” that

consists of convolution blocks to make the binary decision for

filtering.

Sub-instance 2: FoggyCache (FC) [19] is a REUSE method for

image and audio input. FC uses low-level features (SIFT for image,

MFCC for audio) and applies locality-sensitive hashing (LSH) for

embedding. Then FC uses L2 norm as the difference function and

applies KNN to get the reusable inference results from previously

cached ones.

Sub-instance 3: Reducto [40] is a variant of SKIP method for

video input. It measures low-level feature (pixel, edge, corner, area)

difference between successive frames. If they are similar enough,

Reducto skips the current frame and returns the latest result. For-

mally, let 𝑥 be the current frame and 𝑥 ′ be the previous frame.

Reducto defines 𝑑 (𝑒, 𝑒 ′) = (𝑒 − 𝑒 ′)/𝑒 ′, where 𝑒, 𝑒 ′ are low-level

features of 𝑥, 𝑥 ′. It uses a threshold function as the classifier, i.e.,

1(𝑑 (𝑒, 𝑒 ′) > 𝑇 ).
Limitations of sub-instances. First, the existing non-end-to-

end methods lack theoretical abstraction of the problem. They split

the filtering task into sub-modules and propose bespoke solutions

for each module, leading to difficulty in performing theoretical

analysis. Second, though the handcrafted features (like Pixel and

SIFT [19, 40]) or pre-trained feature embeddings (likeMobileNet [5])

are very efficient, they are not optimal in accuracy [17] and result

in limited support for input modalities and unguaranteed discrim-

inability to diverse tasks. Input modalities like text and sensor

signals are also very common for mobile AI applications, which,

however, haven’t been supported by existing filters yet. Our exper-

iments also show that these non-end-to-end learned features are

poorly discriminative in many cases.

4.4 End-to-end Learnability
To obtain feature with robust discriminability for diverse data

modalities and inference tasks in mobile applications, a key design

principle of our framework is the end-to-end learnability. End-to-

end learning system casts complex processing components into

coherent connections in deep neural networks [17] and optimizes

itself by applying gradient-based back-propagation algorithms all

through the networks. Deep end-to-end models have shown state-

of-the-art performance on various tasks including autonomous

driving [54] and speech recognition [2]. As aforementioned, a main

component of our unified framework is to measure the semantic

similarity between two inputs. To make our framework end-to-end

learnable, we leverage the metric learning [37] paradigm, whose

goal is to learn a task-specific distance function on two objects. The

metric learning paradigm turns the fixed difference function 𝑑 (e.g.,

Euclidean distance and L2 norm) used by existing methods into an

end-to-end learnable network.Within themetric learning paradigm,

we adopt Siamese network structure [36] for feature embedding

to support two inputs and flexible input modalities. Siamese net-

work uses the same weights while working on two different inputs

to compute comparable output vectors, and has been successfully

applied in face verification [58], pedestrian tracking [38], etc. We

can flexibly implement the Siamese feature embedding by incorpo-

rating different neural network blocks to learn modality-specific

features in an end-to end manner, instead of tailoring handcrafted

or pre-trained feature modules. Our experimental results show that

our end-to-end learned features have robust discriminability to

diverse inference workloads in mobile-centric AI applications.

5 DESIGN OF INFI
Based on our input filtering framework, in this section, we present

the concrete design of InFi (INput FIlter), which supports both SKIP

and REUSE functions, named InFi-Skip and InFi-Reuse. The design
of InFi has four key components: feature embedding, classifier, train-

ing mechanism, and inference algorithm. We also discuss diverse

deployments of InFi in AI applications on mobile, edge, and cloud

devices.

5.1 Feature Networks for Diverse Input
Modalities in Mobile-centric AI

InFi supports filtering inference workloads with six typical input

modalities in mobile applications: text, image, video, audio, sensor

signal, and featuremap.We develop a collection ofmodality-specific

feature networks as building blocks for learning feature embedding.

Our major consideration in designing these feature networks is

resource efficiency on mobile devices.

Text modality (𝑔𝑡𝑒𝑥𝑡 ). Text is tokenized into a sequence of

integers, where each integer refers to the index of a token. We adopt

the word-embedding layer to map the sequence to a fixed-length

vector by a transformation matrix and use a densely connected

layer with a Sigmoid activation to learn the text features.

Image modality (𝑔𝑖𝑚𝑎𝑔𝑒 ). We use depth-wise separable convo-

lution [11], denoted by 𝑆𝑒𝑝𝐶𝑜𝑛𝑣 , to learn visual features. 𝑆𝑒𝑝𝐶𝑜𝑛𝑣 is

a parameter-efficient and computation-efficient variant of the tradi-

tional convolution which performs a depth-wise spatial convolution

on each feature channel separately and a point-wise convolution

mixing all output channels. Then we build residual convolution

blocks [24] 𝐶𝑜𝑛𝑣𝑅𝑒𝑠 as follows:

𝐶𝑜𝑛𝑣𝑆𝑡𝑒𝑝 (𝑥) = 𝐿𝑁 (𝑆𝑒𝑝𝐶𝑜𝑛𝑣 (𝑅𝑒𝐿𝑈 (𝑥))),
𝑐1 (𝑥) = 𝐶𝑜𝑛𝑣𝑆𝑡𝑒𝑝 (𝑥), 𝑐2 (𝑥) = 𝐶𝑜𝑛𝑣𝑆𝑡𝑒𝑝 (𝑐1 (𝑥)),
𝐶𝑜𝑛𝑣𝑅𝑒𝑠 (𝑥) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷 (𝑐2 (𝑥)) +𝐶𝑜𝑛𝑣𝑆𝑡𝑒𝑝 (𝑥),

where 𝑅𝑒𝐿𝑈 denotes the rectified linear unit, 𝐿𝑁 denotes the layer

normalization and𝑀𝑎𝑥𝑃𝑜𝑜𝑙2𝐷 denotes the 2D max-pooling layer.

Finally, we build the image feature networkwith two residual blocks



InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

followed by a global max-pooling layer and a Sigmoid-activated

dense layer.

Video modality (𝑔𝑣𝑖𝑑𝑒𝑜 ). For video modality, we need to rep-

resent not only the spatial but also the temporal features. Given

a window of frames, we stack one residual block for each frame

and then concatenate their resulting feature maps. Except for the

first residual block, the video feature network performs the same

operation as the image feature network.

Audio modality (𝑔𝑎𝑢𝑑𝑖𝑜 ).We consider audio inputs in the form

of either a 1D waveform or a 2D spectrogram and use the same

structure as image feature networks to learn features from audio.

Sensor signal and feature map modality (𝑔𝑣𝑒𝑐 ). Motion sen-

sors are widely used in mobile devices and play a key role in many

smart applications, e.g., gyroscope for augmented reality [29] and

accelerator for activity analysis [3]. Feature maps refer to the in-

termediate outputs of deep models and need to be transmitted in

workloads that involve model partitioning [75]. We consider these

two types of input as a vector with fixed shape and use two densely

connected layers to learn the feature embedding from the flattened

vector.

Flexible support for input modalities. Our design provides

a flexible support for diverse input modalities in mobile-centric

AI applications. We can easily integrate a modality-specific neural

network from advanced machine learning research as the feature

network block into our framework, so as to learn feature embed-

dings in the end-to-end way.

5.2 Task-agnostic Classifier
Each feature network 𝑔𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 , where𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 belongs to {text,

image, video, audio, vec}, takes 𝑥 as input and output the embedding

𝑒𝑚𝑏. We add a dropout layer after the last dense layer of feature net-

works to reduce overfitting. Following previous design of Siamese

network [36], we use the absolute difference as the function 𝑑 .

Let 𝑒𝑚𝑏1, 𝑒𝑚𝑏2 denote the embedding outputs of two inputs 𝑥1, 𝑥2.

The classifier is defined as 𝑔𝑐𝑙𝑠 = 𝜎 (
∑
𝑗 𝑤 𝑗 |𝑒𝑚𝑏

( 𝑗)
1
− 𝑒𝑚𝑏 ( 𝑗)

2
| + 𝑏),

where 𝑒𝑚𝑏 ( 𝑗) denotes the j-th element in the embedding vector.

To sum up, the input filter function 𝑔 : X → Z can be defined

as 𝑔(𝑥) = (𝑔𝑐𝑙𝑠 ◦ 𝑔𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦) (𝑥). With a proper implementation,

the modality of input data can be automatically detected without

manually setting.

5.3 End-to-end Training
InFi-Skip and InFi-Reuse share the same model architecture, but

have different formats of training data. 1) Learning an InFi-Skip
filter uses the same paradigm as training a binary classifier. Thus its

training samples are (𝑥𝑖 , 𝑓ℎ (ℎ(𝑥𝑖 )))𝑛𝑖=1. In practice, we can use the

original training set of ℎ or data collected during serving ℎ. Since

𝑓ℎ only depends on the inference result, the supervision labels

can be collected automatically. We use the binary cross-entropy

loss function L = 𝑧 log(𝑔(𝑥)) + (1 − 𝑧) log(1 − 𝑔(𝑥)), where 𝑧
denotes the redundancy measurement label. 2) InFi-Reuse filters
are trained using the contrastive loss [21] with a margin parameter

of one. Given a set of input and their discrete inference results, the

redundancy measurement is defined as the distance metric between

a pair of inputs. Formally, a training sample consists of a pair of

inputs and their distance label (𝑥𝑖 , 𝑥 𝑗 , 1(𝑦𝑖 ≠ 𝑦 𝑗 )).

Algorithm 1: Inference with an InFi Filter
input : input source 𝑠𝑟𝑐 , redundancy threshold𝑇 , cache size 𝑠 , KNN

parameter 𝐾 , homogeneity threshold 𝜃𝑇

1 def InFiSkip(src):
2 while 𝑥 ← read(𝑠𝑟𝑐) do
3 if 𝑔 (𝑥) > 𝑇 then 𝑦 ← inference(𝑥) ;
4 else 𝑦 ← 𝑁𝑜𝑛𝑒 ;

5 def InFiReuse(src):
6 Initialize empty 𝑐𝑎𝑐ℎ𝑒 ;

7 while 𝑥 ← read(𝑠𝑟𝑐) do
8 if Len(𝑐𝑎𝑐ℎ𝑒) < 𝑠 then
9 𝑦 ← inference(𝑥) ;

10 𝑐𝑎𝑐ℎ𝑒 [𝑔𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 (𝑥) ] ← 𝑦;

11 else
12 𝑦, 𝜃 ← HKNN(𝑐𝑎𝑐ℎ𝑒,𝑔𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 (𝑥), 𝑔𝑐𝑙𝑠 , 𝐾) ;
13 if 𝜃 < 𝜃𝑇 then
14 𝑦 ← inference(𝑥) ;
15 replace (𝑐𝑎𝑐ℎ𝑒 , {𝑔𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 (𝑥) : 𝑦});

We can optimize all trainable parameters end-to-end, using stan-

dard back-propagation algorithms. In this paper, we focuses on the

potential of end-to-end learnability and regard the training of filters

as an offline process. In the future, we will consider the dynamic

nature of data content and explore online update of InFi.

5.4 Inference Phase
After training an InFi filter, we integrate it into the original inference
workload using Alg. 1.

InFi-Skip.We set a redundancy threshold for InFi-Skip to deter-

mine whether to skip the current input. And if we skip the input,

InFi-Skip will return a NONE result, whose interpretation depends

on the redundancy measurement in specific applications. For exam-

ple, NONE means no face detected in face detection, 0 vehicle in

vehicle counting application, meaningless speech in speech recog-

nition, etc.

InFi-Reuse. To reuse previous inference results, we need to

maintain a cache whose entry is a key-value pair of an input em-

bedding and its inference results. Following the previous RESUE

approach [19], we adopt K-Nearest Neighbors (KNN) algorithm to

reuse cached results. But it is possible that a new input is not similar

with any cached entries, i.e., a cache miss. We adopt Homogenized

KNN (H-KNN) [19] algorithm to handle this problem, which cal-

culates a homogeneity score 𝜃 of the found K nearest neighbors

and sets a threshold 𝜃𝑇 on the homogeneity score to detect the

cache miss. Then we can replace entries using policies like least

frequently used (LFU), denoted by replace in Alg. 1. Different from
original KNN that typically uses Euclidean distance, which is non-

parametric, we set the distance measurement as the trained𝑔𝑐𝑙𝑠 . We

denote HKNN(𝑐𝑎𝑐ℎ𝑒, 𝑒𝑚𝑏,𝑔𝑐𝑙𝑠 , 𝐾) as the H-KNN function which

returns the majority inference result 𝑦 of 𝐾 nearest neighbors of

𝑒𝑚𝑏 in 𝑐𝑎𝑐ℎ𝑒.𝑘𝑒𝑦𝑠 using the 𝑔𝑐𝑙𝑠 to calculate the distance between

embeddings, and computes 𝜃 . We focus on taking the advantage of

end-to-end learnability, and other subtle optimization opportunities

such as cache warm-up are out of the scope of this work.



ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

(a) On-device (b) Offloading

(c) Model Partitioning
mobile-side model edge-side model

Src InFi

feature 
map

Src InFi Src InFi
source 
data

Mobile Device

Edge Device

Figure 4: Three deployments of inference workload and InFi
on mobile-edge systems.

5.5 Mobile-centric Deployments
Unlike existing work tailored for specific deployment, e.g., infer-

ence offloading [5, 19, 40], InFi supports diverse mobile-centric

deployments: (1) On-device: both inference model and input fil-

ter are deployed on one device; (2) Offloading: the input filter

is deployed on one device, and the inference model is deployed

on another device. (3) Model Partitioning (MP) [75]: the infer-
ence model is partitioned across two devices, and the input filter is

deployed with the first part. MP is a promising approach to collab-

oratively make use of the computing resources of mobile and edge

devices [44, 61] and better protect the privacy of mobile data [51].

For MP deployment, the filter’s input is the feature map, so existing

filtering approaches [5, 19, 40] cannot be applied. Due to the sup-

port of feature map modality, InFi is the first input filter that can be

applied in model partitioning workloads. Fig. 4 illustrates the three

typical deployments on mobile and edge devices. Note that InFi is
not limited to systems with a single mobile and edge node. For ex-

ample, training one filter per server, or changing one filter’s binary

classifier into a multi-category one (one bit per server), InFi-Skip
can be used in the multi-tenancy context [5].

6 EVALUATION
In this section, we evaluate InFi in 12 mobile-centric AI applica-

tions, covering six input modalities. The comparisons with three

strong baselines [5, 19, 40] show that InFi has wider applicability
and outperforms them in both accuracy and efficiency. Compared

with a native vehicle counting workload in a city-scale video an-

alytics application, InFi-Skip / InFi-Reuse can achieve 1.59-2.9× /

1.87-8.5× throughput and save 66.5-70.7% / 91.1-95.0% bandwidth,

respectively, while keeping over 90% inference accuracy (see Tab. 5).

Experiments also confirm the theoretical results in Sec. 3.

6.1 Implementation and Configurations
We implemented InFi 1 in Python. We build all feature networks

and classifiers with TensorFlow 2.4 [60], and train them using the

RMSprop [26] optimizer. Learning rate is set as 0.001, batch size

is 32, and the number of training epochs is 20. In the text feature

network, the output dimension of embedding layer is 32. In image,

video, and audio feature networks, we use 32 and 64 convolution

kernels in the two residual blocks. We use 128 units in the first

dense layer in vector feature networks. The last dense layer of all

feature networks has 200 units and 0.5 dropout probability. We train

models on Ubuntu 16.04 and use TFLite [42] to transform saved

1
https://github.com/yuanmu97/infi

Table 1: Datasets and Inference Workloads

Dataset Modality Inference Task

Hollywood2

Video Clip Action Classification (AC)

Image

Face Detection (FD)

Pose Estimation (PE)

Gender Classification (GC)

Audio Speech Recognition (SR)

Text

Named Entity Recognition (NER)

Sentiment Classification (SC)

ESC-10 Audio Anomaly Detection (AD)

UCI HAR Motion Signal Activity Recognition (HAR)

MoCap Motion Signal User Identification (UI)

City Traffic

Video Stream Vehicle Counting (VC)

Feature Map Vehicle Counting (VC-MP)

checkpoints into .tflite files. For Android, we use Java API to run

inference using the Interpreter object that loads the .tflite file.

Datasets and inference models. To evaluate InFi’s wide ap-
plicability, we choose 10 inference workloads that cover six input

modalities and three deployments (see Tab. 1). Five datasets are

used: (1) We reprocessed a standard video dataset, Hollywood2 [46],

to create four different input modalities: video clip, image, audio

and text. An action classification model [62] is deployed on the orig-

inal video clips. Images are sampled from the video clips and a face

detection [56], a pose estimation [6] and a gender classification [56]

models are deployed. Audio is extracted from each video clip and

we deploy a speech recognition model [2]. Text is the caption gen-

erated on sampled images by an image captioning model [69]. A

named entity recognition model [27] and a sentiment classification

model [35] are deployed. (2) We use ESC-10 dataset [53] for audio

anomaly detection and deploy an transformer-based model [18]. (3)

We use UCI HAR dataset [3] for motion signal-based human activ-

ity recognition and deploy a LSTM-based model [10]. (4) We use

MoCap dataset [14] for training a motion signal-based user iden-

tification (12 users) model, using a LSTM-based architecture [10],

and deploy it as the inference workload. (5) We collected a video

dataset, named City Traffic, from a real city-scale video analytics

platform. We collected 48 hours of videos (1FPS) from 10 cameras

at road intersections and deploy YOLOv3 re-implemented with Ten-

sorFlow 2.0 [76] to count the number of vehicles in video frames.

All deployed inference models load publicly released pretrained

weights. And we split each dataset for training and testing by 1:1

(Hollywood2 and UCI HAR are split randomly, while City Traffic is

split by time on each camera).

Devices and deployments. We use an edge server with one

NVIDIA 2080Ti GPU and three mobile platforms: (1) NVIDIA JET-

SON TX2 [63], (2) XIAOMI Mi 5, and (3) HUAWEI WATCH. All

device-independent metrics are tested on the edge. For vehicle

counting, we test three deployments: on-device, offloading, and

model partitioning (see Sec. 5.5).

Baselines.Weadopt three strong baselines: FilterForward (FF) [5],

Reducto [40], and FoggyCache (FC) [19]. See Sec. 4.3 for details of



InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

Table 2: Filtering rate @ 90% inference accuracy of SKIP
methods.

Method FD PE GC AC VC AD

FF 0.0% 14.5% 0.0% 0.0% 48.0% /

Reducto / / / / 48.6% /

InFi-Skip 36.1% 18.9% 33.1% 56.0% 66.5% 75.4%

Optimal 64.8% 34.4% 71.8% 91.2% 77.7% 86.8%

Method SR NER HAR UI SC VC-MP

InFi-Skip 44.1% 26.8% 91.2% 72.4% 22.5% 70.7%

Optimal 59.9% 34.4% 91.8% 79.8% 63.8% 77.7%

Table 3: Filtering rate @ 90% inference accuracy of REUSE
methods.

Method GC AC HAR SC VC-MP VC

FC 66.1% 13.2% / / / 59.4%

InFi-Reuse 98.8% 32.1% 98.3% 43.4% 95.0% 91.1%

baselines. For workloads with no existing method presented (to

our best knowledge), we tested a method dubbed Low-level that
first computes low-level embedding for inputs (MFCC for audio,

Bag-of-Words for text, raw data for motion signal and feature map).

Then Low-level uses K-nearest neighbors vote (K=10) for both SKIP

and REUSE cases. We also deployed YOLOv3-tiny [1] model for

vehicle counting and a lightweight pose estimation model [52] to

compare input filtering and model compression techniques.

6.2 Inference Accuracy vs. Filtering Rate
First, we test two device-independent metrics (inference accuracy

and filtering rate) on the ten inference workloads. We adjust the

confidence threshold in FF, Reducto and InFi-Skip, and the ratio of

cached inputs in FC and InFi-Reuse, from 0 to 1 with 0.01 interval.

Redundancy measurements. (1) SKIP: For FD (PE), outputs

with no detected face (person keypoints) are redundant. For GC

(SC), outputs with classification confidence less than a threshold,

CONF, are redundant. For AC, outputs that are not in a subset of

classes, Sub, are redundant. For SR, outputs with the number of

recognized words less than a threshold, N, are redundant. For NER,

outputs without entity label “PERSON” are redundant. For HAR,

outputs that are not “LAYING” are redundant. For UI, outputs that

do not belong to the first 6 users are redundant. For AD, outputs that

are not in {“Cry, Sneeze, Firing”} (anomaly events) are redundant.

For VC and VC-MP, outputs with zero count are redundant. (2)

REUSE: Experimental results show that cache miss happens rarely,

so the homogeneity threshold is set as 0.5. We regard inputs that

hit the cache as redundant. For the VC (-MP), since we have 86K

images from each camera, a fixed cache ratio can lead to serious

inefficiency in the KNN algorithm. We fix the cache size as 1000

and reinitialize the cache every 5000 frames. For other inference

workloads, we set a fixed cache size according to the cache ratio.

Overview of results. Tab. 2 and Tab. 3 summarize the results of

SKIP and REUSE methods. Following related work [40], we report

FF
InFi-Skip
Worst
Optimal

Fi
lte

rin
g 

R
at

e

0

0.2

0.4

0.6

Inference Accuracy
0.5 0.6 0.7 0.8 0.9 1.0

(a) Pose Estimation

FF
InFi-Skip
Worst
Optimal

Fi
lte

rin
g 

R
at

e

0

0.2

0.4

0.6

0.8

1.0

Inference Accuracy
0 0.2 0.4 0.6 0.8 1.0

(b) Face Detection

Figure 5: Comparison between FF and InFi-Skip filters on
visual detection workloads.

InFi-Skip (N=0)
InFi-Skip (N=2)
Worst
Optimal

Fi
lte

rin
g 

R
at

e

0

0.1

0.2

0.3

Inference Accuracy
0.80 0.85 0.90 0.95 1.00

(a) SR (N=0)

Worst
Optimal
InFi-Skip (N=2)
InFi-Skip (N=0)

Fi
lte

rin
g 

R
at

e

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Inference Accuracy
0.80 0.85 0.90 0.95 1.00

(b) SR (N=2)

Figure 6: InFi-Skip filters on speech recognition workloads.
N is the minimal number of recognized words.

the filtering rates at 90% inference accuracy. The optimal results are

computed by (1-0.9)+𝑟𝑁 where 𝑟𝑁 denotes the ratio of redundant

inputs in the test dataset. Results show that InFi-Skip outperforms

FF and Reducto on all 10 workloads with significantly higher filter-

ing rate and wider applicability. Similarly, InFi-Reuse significantly
outperforms FC on all 6 applicable workloads. InFi-Skip can filters

18.9%-91.2% inputs and InFi-Reuse can filters 32.1%-98.8% inputs,

while keeping more than 90% inference accuracy. For all workloads,

Low-level method cannot achieve 90% inference accuracy unless no

input is filtered (i.e. 0.0% filtering rate), and we omit these results

in the tables.

Feature discriminability. By comparing FF and InFi on FD, PE,

GC, and AC workloads, we evaluate the discriminability of our end-

to-end learned features. As shown in Fig. 5, FF works on the pose

estimation workload, but not on the face detection workload. The

“Worst” case is calculated by 𝑟 = 1 −𝐴𝑐𝑐 . The reason may be that

there is a “person” label in the ImageNet dataset, so the pretrained

feature embedding in FF is discriminative for determining whether

there is a human pose. However, on other tasks (e.g., FD, GC and

AC), the pretrained features are not discriminative and FF can only

provide two extreme filtering policies: either filtering all input or

filtering nothing, which is useless in practice. On the contrary,

InFi-Skip learns feature embedding with robust discriminability

and performs well on all four workloads. With over 90% inference

accuracy, InFi-Skip can filter 18.9% and 36.1% inputs for PE and FD

workloads, respectively.

Transferability.One interesting question is, how transferable is

the trained filter to workloads with a looser or tighter redundancy

measurement? We set the minimal number of recognized words,



ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

InFi-Skip (R=1)
InFi-Skip (R=0.1)
Worst
OptimalFi

lte
rin

g 
R

at
e

0

0.2

0.4

0.6

0.8

1.0

Inference Accuracy
0.85 0.90 0.95 1.00

(a) HAR (L=LAYING)

InFi-Reuse (R=1)
InFi-Reuse (R=0.1)
RandomFi

lte
rin

g 
R

at
e

0.85

0.90

0.95

1.00

Inference Accuracy
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

(b) HAR Reuse

Figure 7: InFi filters on HAR inference workloads. R denote
the ratio of training samples used. The “Random” case labels
each input randomly.

InFi-Skip
Low-level
Worst
Optimal

Fi
lte

rin
g 

R
at

e

0

0.2

0.4

0.6

0.8

1.0

Inference Accuracy
0.7 0.8 0.9 1.0

(a) NDense=200, EmbLen=128

NDense=1
NDense=100
NDense=200
NDense=400Fi

lte
rin

g 
R

at
e

@
Ac

c.
=0

.9

0

0.2

0.4

0.6

0.8

Embedding Length
1 16 32 64 128 256

(b) Model Complexity

Figure 8: InFi-Skip on UI workload. NDense is the number of
dense units. EmbLen is the length of embedding.

N, as 0 and 2 and train two InFi-Skip filters. Then we test the two

filters on two test sets with different N. As shown in Fig. 6, the

performance of InFi-Skip (N=2) is closed to InFi-Skip (N=0) when

tested with N=0, however, the performance of InFi-Skip (N=0) is

apparently worse when tested with N=2. An intuitive explain is

that the learned feature with a looser redundancy measurement

covers the one with a tighter redundancy measurement, while the

opposite is not true.

Sensitivity to training size.We further divide training splits to

sets with different size. As shown in Fig. 7, using only 10% samples

from the training set, InFi can still achieve near-optimal perfor-

mance on HAR workload. Let R denote the ratio of training samples

used for training. When achieving over 95% inference accuracy,

InFi-Skip (R=1) filters 86.4% inputs while InFi-Skip (R=0.1) still fil-

ters 81.1%. For high-accuracy reuse, the impact of training size is

relatively greater. When filtering 90% inputs, InFi-Reuse (R=1) can
achieve 95.9% inference accuracy, while the accuracy of InFi-Reuse
(R=0.1) decreases to 88.1%.

Sensitivity to model complexity. To explore the relationship

between the complexity and performance of input filters, we trained

InFi-Skip filters for the UI workload using different length of em-

bedding (1, 16, 32, 64, 128, 256) and number of dense units (1, 100,

200, 400) in the classifier. And we measure the performance by the

maximum filtering rate when achieving 90% inference accuracy.

As shown in Fig. 8b, except for extreme cases (e.g., single dense or

embedding unit), the filtering performance is relatively robust.

Sensitivity to K in KNN. The parameter K in KNN affects the

classification accuracy. We vary K from 1 to 20 and test the REUSE

InFi-Reuse (K=5)
InFi-Reuse (K=1)
FC (K=5)
FC (K=1)
RandomFi

lte
rin

g 
R

at
e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Inference Accuracy
0.6 0.7 0.8 0.9 1.0

(a) Gender Classification

InFi-Reuse (K=10)
FC (K=10)
Random

Fi
lte

rin
g 

R
at

e

0

0.1

0.2

0.3

0.4

0.5

Inference Accuracy
0.80 0.85 0.90 0.95 1.00

(b) Action Classification

Figure 9: Comparison of FC and InFi-Reuse on visual classi-
fication workloads. K is the parameter in KNN.

FF
Reducto
InFi-Skip
InFi-Skip (MP)
Worst
Optimal

Fi
lte

rin
g 

R
at

e

0

0.2

0.4

0.6

0.8

Inference Accuracy
0.80 0.85 0.90 0.95 1.00

(a) SKIP Methods

FC (K=10)
InFi-Reuse (K=10)
InFi-Reuse (MP, K=10)
Random

Fi
lte

rin
g 

R
at

e

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Inference Accuracy
0.7 0.8 0.9 1.0

(b) REUSE Methods

Figure 10: Comparisons of filters on VC and VC-MP.

filters’ performance. As shown in Fig. 9, on GC workload, InFi-
Reuse is robust to varied K parameters, while FC suffers serious

performance degradation. For example, with 90% inference accu-

racy, FC (K=5) can filter 68.4% inputs, while FC (K=1) can only filter

27.3% which is slightly higher than the random guess (20%). On the

contrary, InFi-Reuse (K=1,5) can all achieve a 94.3% filtering rate

with more than 95% inference accuracy. For the AC workload, the

results show that the handcrafted feature SIFT is not discriminative,

and all tested K parameters lead to similar performance with ran-

dom labeling. InFi-Reuse can learn an action-related discriminative

feature, it can filter 18.6% inputs and keep more than 90% inference

accuracy (K=10).

Comparisons on VC(-MP) workloads. Unlike other datasets,
the video frames arrive in time order rather than randomly. For

VC-MP, we partition the YOLOv3 model to mobile-side (the first

39 layers) and edge-side (the rest layers). As shown in Fig. 10, InFi
outperforms FF, Reducto, and FC, and also is the only applicable

method for the VC-MPworkload. With over 90% inference accuracy,

InFi-Skip achieves 66.5% filtering rate, while FF and Reducto achieve

48.0% and 48.6%, respectively; InFi-Reuse filters 31.7% more inputs

than FC when K=10. The results show the superiority of end-to-end

learned features over handcrafted and pre-trained ones.

6.3 Filterability
In Sec. 3, we compare the hypothesis complexity of the inference

and filter models. Let “Conf.>T” denote the low-confidence clas-

sification case (§ 3.2), “Class Subset” denote the redundant class
subset case (§ 3.3), and “Reg.>T” denote the bounded regression

case (§ 3.4). GC and SC belong to the “Conf.>T” case, where T is

0.9. AC, NER, and HAR belong to the “Class Subset” case, where



InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

0.41

0.71 0.78

1.3 1.8 2.25

Left Y Axis
Right Y Axis

Fi
lte

rin
g 

R
at

e
@

0.
9 

In
fe

re
nc

e 
Ac

c.
In

Fi
-S

ki
p 

/ O
pt

im
al

0

0.5

1.0 Throughput
w./w.o. InFi-Skip

@
0.9 Inference Acc.

2

4

6

Redundancy Measurement Classes

Conf. > T
GC, SC

Reg. > T
FD, PE, VC(-MP)

Class Subset
AC, NER, HAR

Figure 11: Comparison of filterable and non-filterable cases.

2.9 16

273

24.4
116

1078

14.4
79.7

410.4

803.8Latency (InFi)
Latency (MobileNetV1)
Energy (InFi)
Energy (MobileNetV1)

La
te

nc
y 

pe
r F

ra
m

e 
(m

s)

0
200
400
600
800

1000
1200

Energy per Fram
e (m

J)0

200

400

600

800

1000

NVIDIA JETSON TX2 XIAOMI Mi 5 HUAWEI WATCH

Figure 12: Latency and energy costs of InFi (image modality)
and MobileNetV1 on mobile platforms.

Table 4: Computation Complexity of Visual Models

Architecture Param# MFLOPs

VGG19 1.44E+08 39,285

ResNet101 4.47E+07 15,158

ResNet50 2.56E+07 7,728

MobileNetV1 4.25E+06 1,137

FF (full frame) 3.12E+05 592

InFi-Skip (image modality) 2.47E+04 351

AC selects 2 action labels, NER selects “PERSON” label, and HAR

selects “LAYING” label. FD, PE and VC(MP) belong to the ‘Reg.>T”

case, where T is 0. SR is a sequence-to-sequence model, which can-

not perfectly fits any of these three cases. We compute the ratio

of resulting filtering rate to the optimal filtering rate at 90% infer-

ence accuracy to compare the filterability of different cases. From a

practical perspective, we evaluate the overall throughput with and

without InFi-Skip filters. As shown in Fig. 11, the “Conf.>T” case

which we proved that the filter’s complexity is not less than the

inference model’s achieves obviously lower filtering ratio (0.41 me-

dian), while other cases which we proved that the filter tends to be

less complex achieve apparently higher ratios (0.71/0.78 medians).

On the other hand, the overall throughput improved by InFi-Skip
filters on filterable cases is more significant than the non-filterable

cases. In the non-filterable cases, GC and SC, InFi achieves around
1.3× throughput, while in the filterable cases, it can improve the

throughput up to 5.92× and achieves 1.8 and 2.25 medians for re-

gression and subset-class cases, respectively. These results show the

guiding significance of our proved filterability in real applications.

6.4 Computation and Resource Efficiency
As we discussed in Sec. 2.2, a “valid” filter should be both accurate

and lightweight. The above results have shown that InFi can fil-

ter significant amount of inputs while keeping accurate inference.

Now, we consider two device-independent metrics: Float Opera-

tions (FLOPs) and the number of Parameters (Param#). We choose

standard CNNs models, FF and InFi with image feature network

for comparison. The FLOPs is calculated by TensorFlow profiler

API float_operation. As shown in Tab. 4, even compared with

MobileNetV1 which is designed for efficiency, InFi reduces about
70% FLOPs and 99.4% parameters. FF (full frame) denotes the overall

model that consists of the first 43 layers of MobileNetV1 and the

full-frame micro-classifier porposed by FF. In the training phase,

InFi (image modality) takes around 710 ms per batch (batch size

is 32) and requires 5337 MB GPU memory which most commer-

cial GPUs can meet. InFi for other input modalities requires far

less resources, e.g., InFi (vector) tasks 3 ms per batch and needs

only 435 MB memory. Next, we test the latency and energy in the

inference phase on mobile platforms. As a fair comparison, we

chose the TFLite-optimized MobileNetV1 [49], which is one of the

most efficient CNNs on mobile devices. As shown in Fig. 12, on

three mobile platforms, InFi with the image feature network costs

only 12-25% runtime of MobileNetV1. The average energy costs of

InFi are 14.4/79.7 mJ per frame, which are much lower than Mo-

bileNetV1 (410.4/803.8 mJ per frame) on the phone/smartwatch.

We implement InFi with MindSpore [48] and the results show that

InFi’s low-energy consumption and low-latency execution do not

depend on the implementation framework.

6.5 Different Mobile-centric Deployments
Now we evaluate the overall performance of inference workloads

in real systems with three ways of deployments. First, we con-

sider the vehicle counting workload: 1) on-device: InFi (image) and

YOLOv3 model on TX2; 2) offload: InFi (image) on TX2 and YOLOv3

model on edge; 3) model partitioning (MP): first 39 layers (10 con-

volution blocks) of YOLOv3 and InFi (feature map) on TX2, rest

of YOLOv3 on edge server. The average throughput of YOLOv3

model on TX2 and edge is 3.2 FPS and 22.0 FPS, respectively. For

MP deployment, the edge-side model serves 24.5 FPS. We report

the average throughput and the bandwidth saving of using InFi-
Skip and InFi-Reuse, with over 90% inference accuracy, in Tab. 5.

As a fair comparison, we test the throughput of YOLOv3-tiny [1]

model, a compressed version for YOLOv3. The inference accuracy

of YOLOv3-tiny is only 67.9% which does not meet the 90% tar-

get. Breaking down the overheads, InFi’s inference costs around 3

ms per frame, and the average latency of KNN is 6 ms per frame

with K=10 and cache size=1000. Achieving over 90% inference ac-

curacy, InFi-Skip improves the throughput to 9.3/55.2/39.0 FPS for

on-device/offload/MP deployments, respectively. Apparently, in ve-

hicle counting workloads, there are more filtering opportunities for

InFi-Reuse. InFi-Reuse improves the throughput to 27.2/77.2/46.0

FPS for these three deployments. Except the on-device deployment

that does not involve cross-device data transmission, InFi-Skip /

InFi-Reuse also save 66.5% / 91.1% and 70.7% / 95.0% bandwidth for

offloading and MP workloads. Unlike YOLOv3-tiny which trades a

significant and fixed loss of accuracy for efficiency, InFi provides



ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

Table 5: Throughput (FPS) / Bandwidth saving (%) of vehicle
counting workloads. Acc. denotes inference accuracy, com-
pared with vehicle count results of YOLOv3.

Workload YOLOv3 InFi-Skip InFi-Reuse YOLOv3-tiny

Acc. (%) 100 90.3 90.5 67.9

On-device 3.2/- 9.3/- 27.2/- 20.4/-

Offloading 22.0/- 55.2/66.5 77.2/91.1 225.3/-

MP 24.5/- 39.0/70.7 46.0/95.0 230.4/-

Table 6: Throughput (FPS) / Bandwidth saving (%) of pose
estimation workloads.

Workload OpenPose InFi-Skip OpenPose-light

Inference Accuracy (%) 100 90.1 76.5

On-device 15.4/- 18.0/- 28.1/-

Offloading 27.7/- 31.5/18.9 98.5/-

MP 29.2/- 33.1/20.2 102.4/-

a flexible trade-off between the inference accuracy and overheads.

Second, we evaluate the pose estimation workload: 1) on-device:

InFi (image) and OpenPose model on TX2; 2) offload: InFi (image)

on TX2 and OpenPose model on edge; 3) model partitioning (MP):

first 39 layers (10 convolution blocks) of OpenPose and InFi (feature
map) on TX2, rest of OpenPose on edge server. Also, we test the

throughput of OpenPose-light [52] model, a lightweight version

of OpenPose. Experimental results are shown in Tab. 6. Similar

to the vehicle counting workload, the lightweight model cannot

achieve our target 90% inference accuracy, although its throughput

boosts significantly. InFi-Skip can flexibly balance the inference

accuracy and throughput. For example, for the on-device deploy-

ment, the throughput improves to 1.17× after using InFi-Skip and

the inference accuracy keeps over 90%.

Temporal robustness of selected threshold.Aquestionworth

considering is whether the filtering performance of the threshold

selected through experiments is robust during online use of InFi
filters. We divided videos into 10 equal-length clips in the time

order to evaluate the temporal robustness of filtering threshold. For

the VC workload, when setting the threshold as 0.2, InFi-Skip filters
out 53.6% frames and achieves 94.9% inference accuracy. The stan-

dard deviation of the inference accuracy in the 10 clips is 2.7% and

the minimal inference accuracy is 91%, which shows the temporal

robustness of the filtering threshold.

7 RELATEDWORK
InFi focuses on filtering redundant inputs in the inference stage. We

discuss two closely related methods: frame filtering [5, 33, 40] and

inference caching [9, 19, 20, 70], and several techniques for specific

inference pipelines [28, 31, 32, 73].

Frame filtering. NoScope [33] trains task-specific difference
detectors to choose necessary frames for object queries in the video

database. FilterForward [5] leverages MobileNet and trains a binary

micro-classifier on the intermediate output of a selected layer to

determine whether to transmit the input image to the server with

offloaded model. Reducto [40] performs on-device frame filtering

by thresholding difference of low-level features between successive

frames. Through elaborate selection for different tasks, low-level

features can efficiently and accurately measure the difference.

Inference caching. Potluck [20] stores and shares inference

results between augmented reality applications. It dynamically

tunes the threshold of input similarity and manages cache based on

the reuse opportunities. FoggyCache [19] is more general and can

be applied to both image and audio inputs. It designs adaptive LSH

and homogenized KNN algorithms to address practical challenges

in inference caching. Instead of caching the final inference results,

DeepCache [70] stores the intermediate feature maps to achieve

more granular reuse. For object recognition, Glimpse [9] maintains

a cache of video frames on mobile devices. It uses cached results to

perform on-device object tracking and sends only trigger frames to

the server with offloaded recognition model.

Approaches tailored for specific pipelines. Focus [28] is
designed for querying detected objects in video database and uses

compressed CNN to index possible object classes at ingest stage and

reduces the query latency by clustering similar objects. Blazeit [32]

develops neural networks-based methods to optimize approximate

aggregation queries of detected objects in video database. Focusing

on the object detection in video streams, Chameleon [31] proposes

to adaptively select a suitable pipeline configuration including the

resolution and frame rate of videos, backbone neural networks for

inference, etc. Elf [73] is designed for mobile video analytic where

the input data is pre-processed by a lightweight on-device model

and then offloaded in parallel to multiple servers with the same

subsequent inference functionality.

Our proposed input-filtering framework unifies the frame filter-

ing and inference caching approaches. And we complement existing

work in theoretical analysis and flexible supports for more input

modalities and deployments.

8 CONCLUSION
In this paper, we study the input filtering problem and provide the-

oretical results on complexity comparisons between the hypothesis

families of inference models and their input filters. We propose the

first end-to-end learnable framework that unifies both SKIP and

REUSE methods and supports multiple input modalities and deploy-

ments. We design and implement an input filter system InFi based
on our framework. Comprehensive evaluations confirm our proven

results and show that InFi has wider applicability and outperforms

strong baselines on accuracy and efficiency.

ACKNOWLEDGMENTS
This research is supported by the National Key R&D Program of

China 2018YFB0803400, China National Natural Science Founda-

tion with No. 61822209, No. 62132018, No. 61932016, No.61625205,

Key Research Program of Frontier Sciences, CAS. No. QYZDY-SSW-

JSC002. This work is partially sponsored by CAAI-Huawei Mind-

Spore Open Fund.



InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia

REFERENCES
[1] Pranav Adarsh, Pratibha Rathi, and Manoj Kumar. 2020. YOLO v3-Tiny: Object

Detection and Recognition using one stage improved model. In 2020 6th Interna-
tional Conference on Advanced Computing and Communication Systems (ICACCS).
IEEE, 687–694.

[2] Dario Amodei, SundaramAnanthanarayanan, Rishita Anubhai, Jingliang Bai, Eric

Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang

Chen, et al. 2016. Deep speech 2: End-to-end speech recognition in english and

mandarin. In International conference on machine learning. PMLR, 173–182.

[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, Jorge Luis Reyes-

Ortiz, et al. 2013. A public domain dataset for human activity recognition using

smartphones.. In Esann, Vol. 3. 3.
[4] Adrian Bulat, Jean Kossaifi, Georgios Tzimiropoulos, and Maja Pantic. 2020. To-

ward fast and accurate human pose estimation via soft-gated skip connections. In

2020 15th IEEE International Conference on Automatic Face and Gesture Recognition
(FG 2020). IEEE, 8–15.

[5] Christopher Canel, Thomas Kim, Giulio Zhou, Conglong Li, Hyeontaek

Lim, David G Andersen, Michael Kaminsky, and Subramanya Dulloor.

2019. Scaling Video Analytics on Constrained Edge Nodes. In Proceed-
ings of Machine Learning and Systems, A. Talwalkar, V. Smith, and M. Za-

haria (Eds.), Vol. 1. 406–417. https://proceedings.mlsys.org/paper/2019/file/

85d8ce590ad8981ca2c8286f79f59954-Paper.pdf

[6] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. 2019. OpenPose:

Realtime Multi-Person 2D Pose Estimation using Part Affinity Fields. IEEE
Transactions on Pattern Analysis and Machine Intelligence (2019).

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection:

A survey. ACM computing surveys (CSUR) 41, 3 (2009), 1–58.
[8] Dimitris Chatzopoulos, Carlos Bermejo, Zhanpeng Huang, and Pan Hui. 2017.

Mobile augmented reality survey: From where we are to where we go. IEEE
Access 5 (2017), 6917–6950.

[9] Tiffany Yu-Han Chen, Lenin Ravindranath, Shuo Deng, Paramvir Bahl, and Hari

Balakrishnan. 2015. Glimpse: Continuous, real-time object recognition on mobile

devices. In Proceedings of the 13th ACM Conference on Embedded Networked Sensor
Systems. 155–168.

[10] Guillaume Chevalier. 2016. LSTMs for human activity recognition.

[11] François Chollet. 2017. Xception: Deep learning with depthwise separable con-

volutions. In Proceedings of the IEEE conference on computer vision and pattern
recognition. 1251–1258.

[12] Corinna Cortes, Vitaly Kuznetsov, Mehryar Mohri, and Scott Yang. 2016. Struc-

tured prediction theory based on factor graph complexity. Advances in Neural
Information Processing Systems 29 (2016), 2514–2522.

[13] Yaqi Duan, Chi Jin, and Zhiyuan Li. 2021. Risk bounds and rademacher complexity

in batch reinforcement learning. In International Conference on Machine Learning.
PMLR, 2892–2902.

[14] Andrew Gardner, Jinko Kanno, Christian A Duncan, and Rastko Selmic. 2014.

Measuring distance between unordered sets of different sizes. In Proceedings of
the IEEE conference on computer vision and pattern recognition. 137–143.

[15] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk,

Quoc V Le, and Barret Zoph. 2021. Simple copy-paste is a strong data augmenta-

tion method for instance segmentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2918–2928.

[16] Iman Ghosh. 2020. https://www.visualcapitalist.com/aiot-when-ai-meets-iot-

technology/

[17] Tobias Glasmachers. 2017. Limits of end-to-end learning. In Asian Conference on
Machine Learning. PMLR, 17–32.

[18] Yuan Gong, Yu-An Chung, and James Glass. 2021. AST: Audio Spectrogram Trans-

former. In Proc. Interspeech 2021. 571–575. https://doi.org/10.21437/Interspeech.

2021-698

[19] Peizhen Guo, Bo Hu, Rui Li, and Wenjun Hu. 2018. FoggyCache: Cross-device

approximate computation reuse. In Proceedings of the 24th Annual International
Conference on Mobile Computing and Networking. 19–34.

[20] Peizhen Guo and Wenjun Hu. 2018. Potluck: Cross-application approximate

deduplication for computation-intensive mobile applications. In Proceedings of the
Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems. 271–284.

[21] Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006. Dimensionality reduction

by learning an invariant mapping. In 2006 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’06), Vol. 2. IEEE, 1735–1742.

[22] Seungyeop Han, Haichen Shen, Matthai Philipose, Sharad Agarwal, AlecWolman,

and Arvind Krishnamurthy. 2016. Mcdnn: An approximation-based execution

framework for deep stream processing under resource constraints. In Proceedings
of the 14th Annual International Conference on Mobile Systems, Applications, and
Services. 123–136.

[23] Nick Harvey, Christopher Liaw, and Abbas Mehrabian. 2017. Nearly-tight VC-

dimension bounds for piecewise linear neural networks. In Conference on learning
theory. PMLR, 1064–1068.

[24] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[25] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han. 2018. Amc:

Automl for model compression and acceleration on mobile devices. In Proceedings
of the European conference on computer vision (ECCV). 784–800.

[26] Geoffrey Hinton, Nitish Srivastava, and Kevin Swersky. 2012. Neural networks

for machine learning lecture 6a overview of mini-batch gradient descent. Cited
on 14, 8 (2012), 2.

[27] Matthew Honnibal, Ines Montani, Sofie Van Landeghem, and Adriane Boyd.

2020. spaCy: Industrial-strength Natural Language Processing in Python. https:

//doi.org/10.5281/zenodo.1212303

[28] Kevin Hsieh, Ganesh Ananthanarayanan, Peter Bodik, Shivaram Venkataraman,

Paramvir Bahl, Matthai Philipose, Phillip B Gibbons, and Onur Mutlu. 2018.

Focus: Querying large video datasets with low latency and low cost. In 13th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI}
18). 269–286.

[29] I Indrawan, I Bayupati, and Desy Purnami Singgih Putri. 2018. Markerless

Augmented Reality Utilizing Gyroscope to Demonstrate the Position of Dewata

Nawa Sanga. International Journal of Interactive Mobile Technologies 12, 1 (2018).
[30] Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and

Tuo Zhao. 2020. SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural

Language Models through Principled Regularized Optimization. In Proceedings
of the 58th Annual Meeting of the Association for Computational Linguistics. 2177–
2190.

[31] Junchen Jiang, Ganesh Ananthanarayanan, Peter Bodik, Siddhartha Sen, and Ion

Stoica. 2018. Chameleon: scalable adaptation of video analytics. In Proceedings of
the 2018 Conference of the ACM Special Interest Group on Data Communication.
253–266.

[32] Daniel Kang, Peter Bailis, and Matei Zaharia. [n.d.]. BlazeIt: Optimizing Declara-

tive Aggregation and Limit Queries for Neural Network-Based Video Analytics.

Proceedings of the VLDB Endowment 13, 4 ([n. d.]).
[33] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia. 2017.

NoScope: Optimizing Neural Network Queries over Video at Scale. Proceedings
of the VLDB Endowment 10, 11 (2017).

[34] Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. 1994. An
introduction to computational learning theory. MIT press.

[35] Yoon Kim. 2014. Convolutional Neural Networks for Sentence Classification.

In Proceedings of the 2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Association for Computational Linguistics, Doha, Qatar,

1746–1751. https://doi.org/10.3115/v1/D14-1181

[36] Gregory Koch, Richard Zemel, Ruslan Salakhutdinov, et al. 2015. Siamese neural

networks for one-shot image recognition. In ICML deep learning workshop, Vol. 2.
Lille.

[37] Brian Kulis et al. 2012. Metric learning: A survey. Foundations and trends in
machine learning 5, 4 (2012), 287–364.

[38] Laura Leal-Taixé, Cristian Canton-Ferrer, and Konrad Schindler. 2016. Learning

by tracking: Siamese CNN for robust target association. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition Workshops. 33–40.

[39] En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-demand accel-

erating deep neural network inference via edge computing. IEEE Transactions on
Wireless Communications 19, 1 (2019), 447–457.

[40] Yuanqi Li, Arthi Padmanabhan, Pengzhan Zhao, Yufei Wang, Guoqing Harry Xu,

and Ravi Netravali. 2020. Reducto: On-Camera Filtering for Resource-Efficient

Real-Time Video Analytics. In Proceedings of the Annual Conference of the ACM
Special Interest Group on Data Communication on the Applications, Technologies,
Architectures, and Protocols for Computer Communication (Virtual Event, USA)

(SIGCOMM ’20). Association for Computing Machinery, New York, NY, USA,

359–376. https://doi.org/10.1145/3387514.3405874

[41] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C Lawrence Zitnick. 2014. Microsoft coco: Common

objects in context. In European conference on computer vision. Springer, 740–755.
[42] TensorFlow Lite. 2021. https://www.tensorflow.org/lite

[43] Cihang Liu, Lan Zhang, Zongqian Liu, Kebin Liu, Xiangyang Li, and Yunhao Liu.

2016. Lasagna: Towards Deep Hierarchical Understanding and Searching over

Mobile Sensing Data. In Proceedings of the 22nd Annual International Conference
on Mobile Computing and Networking (New York City, New York) (MobiCom ’16).
Association for Computing Machinery, New York, NY, USA, 334–347. https:

//doi.org/10.1145/2973750.2973752

[44] Jianhui Liu and Qi Zhang. 2019. Code-partitioning offloading schemes in mobile

edge computing for augmented reality. Ieee Access 7 (2019), 11222–11236.
[45] Chunjie Luo, Fan Zhang, Cheng Huang, Xingwang Xiong, Jianan Chen, Lei Wang,

Wanling Gao, Hainan Ye, Tong Wu, Runsong Zhou, et al. 2018. AIoT bench: to-

wards comprehensive benchmarking mobile and embedded device intelligence. In

International Symposium on Benchmarking, Measuring and Optimization. Springer,
31–35.

[46] Marcin Marszałek, Ivan Laptev, and Cordelia Schmid. 2009. Actions in Context.

In IEEE Conference on Computer Vision & Pattern Recognition.

https://proceedings.mlsys.org/paper/2019/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/85d8ce590ad8981ca2c8286f79f59954-Paper.pdf
https://www.visualcapitalist.com/aiot-when-ai-meets-iot-technology/
https://www.visualcapitalist.com/aiot-when-ai-meets-iot-technology/
https://doi.org/10.21437/Interspeech.2021-698
https://doi.org/10.21437/Interspeech.2021-698
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.5281/zenodo.1212303
https://doi.org/10.3115/v1/D14-1181
https://doi.org/10.1145/3387514.3405874
https://www.tensorflow.org/lite
https://doi.org/10.1145/2973750.2973752
https://doi.org/10.1145/2973750.2973752


ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia Mu Yuan, Lan Zhang, Fengxiang He, Xueting Tong, and Xiang-Yang Li

[47] Arnab Neelim Mazumder, Jian Meng, Hasib-Al Rashid, Utteja Kallakuri, Xin

Zhang, Jae-Sun Seo, and Tinoosh Mohsenin. 2021. A survey on the optimization

of neural network accelerators for micro-AI on-device inference. IEEE Journal
on Emerging and Selected Topics in Circuits and Systems 11, 4 (2021), 532–547.

[48] mindspore ai. 2021. https://github.com/mindspore-ai/mindspore

[49] TensorFlow Lite Hosted Models. 2021. https://www.tensorflow.org/lite/guide/

hosted_models

[50] Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. 2018. Foundations
of machine learning. MIT press.

[51] Seyed Ali Osia, Ali Shahin Shamsabadi, Sina Sajadmanesh, Ali Taheri, Kleomenis

Katevas, Hamid R Rabiee, Nicholas D Lane, and Hamed Haddadi. 2020. A hybrid

deep learning architecture for privacy-preserving mobile analytics. IEEE Internet
of Things Journal 7, 5 (2020), 4505–4518.

[52] D Osokin. 2019. Real-time 2D multi-person pose estimation on CPU: Lightweight

OpenPose. In ICPRAM 2019-Proceedings of the 8th International Conference on
Pattern Recognition Applications and Methods. 744–748.

[53] Karol J. Piczak. [n.d.]. ESC: Dataset for Environmental Sound Classification. In

Proceedings of the 23rd Annual ACMConference onMultimedia (Brisbane, Australia,
2015-10-13). ACM Press, 1015–1018. https://doi.org/10.1145/2733373.2806390

[54] Aditya Prakash, Kashyap Chitta, and Andreas Geiger. 2021. Multi-Modal Fusion

Transformer for End-to-End Autonomous Driving. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 7077–7087.

[55] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-

Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
4510–4520.

[56] Sefik Ilkin Serengil and Alper Ozpinar. 2020. LightFace: A Hybrid Deep Face

Recognition Framework. In 2020 Innovations in Intelligent Systems and Applica-
tions Conference (ASYU). IEEE, 23–27. https://doi.org/10.1109/ASYU50717.2020.

9259802

[57] Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu, Yiming Yang, and Denny

Zhou. 2020. MobileBERT: a Compact Task-Agnostic BERT for Resource-Limited

Devices. In Proceedings of the 58th Annual Meeting of the Association for Compu-
tational Linguistics. 2158–2170.

[58] Yaniv Taigman, Ming Yang, Marc’Aurelio Ranzato, and Lior Wolf. 2014. Deepface:

Closing the gap to human-level performance in face verification. In Proceedings
of the IEEE conference on computer vision and pattern recognition. 1701–1708.

[59] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew

Howard, and Quoc V Le. 2019. Mnasnet: Platform-aware neural architecture

search for mobile. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2820–2828.

[60] tensorflow. 2021. https://github.com/tensorflow/tensorflow

[61] Xianzhong Tian, Juan Zhu, Ting Xu, and Yanjun Li. 2021. Mobility-included DNN

partition offloading from mobile devices to edge clouds. Sensors 21, 1 (2021), 229.
[62] An Tran and Loong-Fah Cheong. 2017. Two-stream Flow-guided Convolutional

Attention Networks for Action Recognition. In The IEEE International Conference
on Computer Vision Workshop (ICCVW).

[63] NVIDIA Jetson TX2. 2021. https://www.nvidia.com/en-us/autonomous-

machines/embedded-systems/jetson-tx2/

[64] Leslie Valiant. 2013. Probably Approximately Correct: Nature’s Algorithms for
Learning and Prospering in a Complex World. Basic Books (AZ).

[65] VN Vapnik and A Ya Chervonenkis. 1971. On the Uniform Convergence of

Relative Frequencies of Events to Their Probabilities. Theory of Probability & Its
Applications 16, 2 (1971), 264–280.

[66] JunjueWang, Ziqiang Feng, Zhuo Chen, Shilpa George, Mihir Bala, Padmanabhan

Pillai, Shao-Wen Yang, and Mahadev Satyanarayanan. 2018. Bandwidth-efficient

live video analytics for drones via edge computing. In 2018 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 159–173.

[67] Xiaofei Wang, Yiwen Han, Chenyang Wang, Qiyang Zhao, Xu Chen, and Min

Chen. 2019. In-edge ai: Intelligentizing mobile edge computing, caching and

communication by federated learning. IEEE Network 33, 5 (2019), 156–165.

[68] Yandong Wen, Kaipeng Zhang, Zhifeng Li, and Yu Qiao. 2016. A discriminative

feature learning approach for deep face recognition. In European conference on
computer vision. Springer, 499–515.

[69] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan

Salakhudinov, Rich Zemel, and Yoshua Bengio. 2015. Show, attend and tell: Neural

image caption generation with visual attention. In International conference on
machine learning. PMLR, 2048–2057.

[70] Mengwei Xu, Mengze Zhu, Yunxin Liu, Felix Xiaozhu Lin, and Xuanzhe Liu. 2018.

Deepcache: Principled cache for mobile deep vision. In Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking. 129–144.

[71] Mu Yuan, Lan Zhang, Xiang-Yang Li, and Hui Xiong. 2020. Comprehensive

and efficient data labeling via adaptive model scheduling. In 2020 IEEE 36th
International Conference on Data Engineering (ICDE). IEEE, 1858–1861.

[72] Mu Yuan, Lan Zhang, Xiang-Yang Li, Lin-Zhuo Yang, and Hui Xiong. 2022. Adap-

tive Model Scheduling for Resource-Efficient Data Labeling. ACM Trans. Knowl.
Discov. Data 16, 4, Article 71 (jan 2022), 22 pages. https://doi.org/10.1145/3494559

[73] Wuyang Zhang, Zhezhi He, Luyang Liu, Zhenhua Jia, Yunxin Liu, Marco

Gruteser, Dipankar Raychaudhuri, and Yanyong Zhang. 2021. Elf: accelerate

high-resolution mobile deep vision with content-aware parallel offloading. In

Proceedings of the 27th Annual International Conference on Mobile Computing and
Networking. 201–214.

[74] Chong Zhou and Randy C Paffenroth. 2017. Anomaly detection with robust deep

autoencoders. In Proceedings of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining. 665–674.

[75] Li Zhou, Hao Wen, Radu Teodorescu, and David HC Du. 2019. Distributing deep

neural networks with containerized partitions at the edge. In 2nd {USENIX}
Workshop on Hot Topics in Edge Computing (HotEdge 19).

[76] zzh8829. 2021. https://github.com/zzh8829/yolov3-tf2

https://github.com/mindspore-ai/mindspore
https://www.tensorflow.org/lite/guide/hosted_models
https://www.tensorflow.org/lite/guide/hosted_models
https://doi.org/10.1145/2733373.2806390
https://doi.org/10.1109/ASYU50717.2020.9259802
https://doi.org/10.1109/ASYU50717.2020.9259802
https://github.com/tensorflow/tensorflow
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://doi.org/10.1145/3494559
https://github.com/zzh8829/yolov3-tf2

	Abstract
	1 Introduction
	2 Input Filtering
	2.1 Problem Definition
	2.2 Validity Conditions

	3 Filterability Analysis
	3.1 Definition of Filterability
	3.2 Low-confidence Classification as Redundancy
	3.3 Class Subset as Redundancy
	3.4 Regression Bound as Redundancy
	3.5 Discussions

	4 Framework
	4.1 SKIP as REUSE
	4.2 Inference with an Input Filter
	4.3 Sub-instance Approaches
	4.4 End-to-end Learnability

	5 Design of InFi
	5.1 Feature Networks for Diverse Input Modalities in Mobile-centric AI
	5.2 Task-agnostic Classifier
	5.3 End-to-end Training
	5.4 Inference Phase
	5.5 Mobile-centric Deployments

	6 Evaluation
	6.1 Implementation and Configurations
	6.2 Inference Accuracy vs. Filtering Rate
	6.3 Filterability
	6.4 Computation and Resource Efficiency
	6.5 Different Mobile-centric Deployments

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

