InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference

Mu Yuan
ym0813@mail.ustc.edu.cn
University of Science and Technology of China
Hefei, China

Lan Zhang*
zhanglan@ustc.edu.cn
University of Science and Technology of China
Hefei, China

Fengxiang He
hefengxian@jd.com
JD Explore Academy
Beijing, China

Xueting Tong
tongxueling@mail.ustc.edu.cn
University of Science and Technology of China
Hefei, China

Xiang-Yang Li
xiangyangli@ustc.edu.cn
University of Science and Technology of China
Hefei, China

ABSTRACT
Mobile-centric AI applications put forward high requirements for resource-efficiency of model inference. Input filtering is a promising approach to eliminate the redundancy in the input so as to reduce the cost of inference. Previous efforts have tailored effective solutions for many applications, but left two essential questions unanswered: (1) theoretical filterability of an inference workload to guide the application of input filtering techniques, thereby avoiding the trial-and-error cost for resource-constrained mobile applications; (2) robust discriminability of feature embedding to allow input filtering to be widely effective for diverse inference tasks and input content. To answer these questions, we first provide a generic formalization of the input filtering problem and theoretically compare the hypothesis complexity of inference models and their input filters to understand the optimization potential of applying input filtering. Then we propose the first end-to-end learnable input filtering framework that covers most state-of-the-art methods and surpasses them in feature embedding with robust discriminability. Based on our framework, we design and implement an input filtering system InFi supporting six input modalities. InFi is the first to support text and sensor signal inputs and model partitioning deployments widely adopted by under-resourced mobile systems. Comprehensive evaluations confirm our theoretical results and show that InFi outperforms strong baselines in applicability, accuracy, and efficiency, owing to its generality and end-to-end learnability. InFi can achieve 8.5× throughput and save 95% bandwidth, while keeping over 90% accuracy, for a video analytics app on mobile platforms.

* Lan Zhang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10...
https://doi.org/10.1145/3495243.3517016

1 INTRODUCTION
The increased computing power of mobile devices and the growing demand for real-time sensor data analytics have created a trend of mobile-centric artificial intelligence (AI) [39, 43, 45, 47, 67]. It is estimated that over 80% of enterprise IoT projects will incorporate AI by 2022 [16]. The on-device inference of computer vision models brings us increasingly rich real-time AR applications on mobile devices [8]. A judicious combination of on-device and edge computing can analyze videos taken by drones in real-time [66]. The resource efficiency of model inference is critical for AI applications, especially for resource-limited mobile devices and latency-sensitive tasks. However, many AI models with state-of-the-art accuracy [4, 15, 30] are too computationally intensive to perform high-throughput inference, even when they are offloaded to edge or cloud servers [73].

For resource-efficient inference, one direct and popular way is to eliminate the redundancy of the deep model itself via accelerating and compressing techniques [1, 22, 25, 52, 55, 57, 59]. In this work, we follow another series of approaches [5, 9, 19, 20, 33, 40] that attempt to filter the redundancy in the input data. Fig. 1 shows four examples of input redundancy in mobile-centric AI applications. We call this series of approaches input filtering and classify them into two categories: SKIP and REUSE. (1) SKIP methods [5, 33] aim to filter input data that will bring useless inference results, e.g., images without faces for a face detector (Fig. 1a) and audios without a valid command for a speech recognizer (Fig. 1b). FilterForward [5] trains a binary classifier and sets a threshold on classification confidence to filter input images. (2) REUSE methods [19, 20] attempt to filter input whose results can reuse the previous inference results, e.g., motion signals of the same action (Fig. 1c) and video frames with the same vehicle count (Fig. 1d). FoggyCache [19] maintains a cache of feature embedding and inference results of previous inputs and searches reusable results in the cache for newly arrived data.
Input filtering usually works as a necessary prelude to inference for under-resourced mobile systems. Moreover, compared with model optimizations, input filtering provides more flexible trade-offs between the accuracy and efficiency, e.g., FilterForward can adjust the threshold in SKIP and FoggyCache can adjust the cache size in REUSE. Although prior efforts have designed effective input filters for a range of applications, two important and challenging questions remain unanswered:

1. **Theoretical filterability analysis for the guidance of applying input filtering to mobile-centric inference**: Not all inference workloads have the optimization potential by using input filtering. Sometimes, to achieve the required accuracy, a SKIP/REUSE filter is more costly than the original inference. Characterizing the conditions under which the filter has to cost more to be accurate is thus essential to input filtering. Previous efforts study the input filtering problem from an application-oriented perspective. They start from the observation of redundancy and propose bespoke input filtering solutions without further analyzing the relation between their inference workloads and input filters. Without theoretical guidance and explanation, though they delivered accurate and lightweight input filters for specific workloads, the trial-and-error process of designing input filters for other workloads is still very cumbersome and may fail next time, especially for resource-scarce mobile systems.

2. **Robust feature discriminability for diverse tasks and modalities in mobile-centric inference**: A discriminative feature representation [68] is critical to filtering performance, since it directly determines the accuracy of making SKIP decisions and finding REUSABLE results. The accuracy is critical to most AI inference workloads, especially for anomaly detection tasks [7, 74]. If anomaly events are incorrectly filtered, the efficiency gains will be meaningless. This is a challenge to the discriminability of features. Recent work [40] shows that for different workloads, the discriminability of low-level features is different, e.g., area feature works better for counting while edge feature works better for detection. Most existing filtering methods leverage handcrafted features [19, 20, 40] or pre-trained neural networks as feature embedding [5], and implicitly assume that these features are sufficiently discriminative for the target workloads. However, mobile applications usually have high diversity in input content and inference tasks. The dependency on pre-trained or handcrafted features leads to unguaranteed discriminability to these diversities. Our experiments (§ 6.2) show that, for an action classification workload, neither a SKIP method using the pre-trained feature [5] nor a REUSE method using the handcrafted feature [19] can work effectively. The feature embedding should be obtained in a workload-agnostic and learnable manner, rather than tailored case by case.

To answer these questions, we first provide a generic formalization of the input filtering problem and conditions of valid filters. Then we theoretically define filterability and analyze the filterability of two most common types of inference workloads, namely classification and regression, by comparing the hypothesis complexity [34, 50] of the inference model and its input filter. Instead of designing bespoke solutions for narrowly-defined tasks, we propose the first, to our best knowledge, end-to-end learnable framework which unifies both SKIP and REUSE approaches [5, 19, 40]. The end-to-end learnability provides feature embedding with robust discriminability in a workload-agnostic manner, thus significantly broadens the applicability. Based on the unified framework, we design an input filtering system, named InFi, which supports both SKIP and REUSE functions. In addition to image, audio and video inputs, InFi complements existing techniques in supporting text, sensor signal, and feature map inputs. Previous methods are typically designed for a certain deployment, e.g., inference offloading [19, 40]. InFi flexibly supports common deployments in mobile systems, including on-device inference, offloading, and model partitioning [75].

In summary, our main contributions are as follows:

- We formalize the input filtering problem and provide validity conditions of a filter. We present the analysis on complexity comparisons between hypothesis families of inference workloads and input filters, which can guide and explain the application of input filtering techniques.

- We propose the first end-to-end learnable input filtering framework that unifies SKIP and REUSE methods. Our framework covers most existing methods and surpasses them in feature embedding with robust discriminability, thus supporting more input modalities and inference tasks.

- We design and implement an input filtering system InFi. Comprehensive evaluations on workloads with 6 input modalities, blue 12 inference tasks, and 3 types of mobile-centric deployments show that InFi has wider applicability and outperforms strong baselines in accuracy and efficiency. For a video analytics application on a mobile platform (NVIDIA JETSON TX2), InFi can achieve up to 8.5x throughput and save 95% bandwidth compared with the naive vehicle counting workload, while keeping over 90% accuracy.

2 INPUT FILTERING

This section formalizes the input filtering problem and provides the conditions of a "valid" input filter for resource-efficient mobile-centric inference.
2.1 Problem Definition

An input filtering problem needs to determine what input is redundant and should be filtered for a given inference model. First, the definition of an input filtering problem is based on its target inference model. Let \(X, Y \) denote the input space and the label space of the target model, respectively. Define \(c : X \rightarrow Y \), named the target concept [64], which provides the ground-truth label for each input. Then training a target model is to search for a function \(h \) from a hypothesis family [64] \(\mathcal{H} \) using a set of training samples \(\mathcal{S} = \{(x_i, y_i)\}_{i=1}^m \), where \(x_1, ..., x_m \) are sampled independently from \(X \) with an identical distribution \(D \) and \(y_i = c(x_i) \). Using the above notations, we define the learning problem of the target inference model \(h \) by \((X, Y, c, \mathcal{H}, D, S) \). Step 0 in Fig. 2 shows the original inference workflow of a trained model \(h \), which takes an input from \(X \) and returns an inference result \(y \in Y \).

Next, given a trained inference model \(h \), its redundancy measurement function can be defined as:

Definition 1 (Redundancy Measurement). A redundancy measurement \(f_h : Y \rightarrow \mathcal{Z} \) of a model \(h \) is a function that takes only the output of \(h \) as input and returns a score that indicates whether the inference computation is redundant.

Such measurements are common in practice. For example, based on the output of a face detector the inference computation that returns no detected face is redundant and can be skipped, and we can set the score \(z = 0 \); Otherwise, \(z = 1 \). Formally, \(y \mapsto 1(|y| > 0) \), where \(y \) is the output set of detected faces, \(1(\cdot) \) is the indicator function. For REUSE cases, if the inference result of an action classifier on a new query is the same as previously cached, the computation is redundant, and we can define \(f_h(y) = 1(y \notin Y_{cached}) \). Note that, this definition of redundancy measurement does not depend on ground-truth labels, since our focus is not the accuracy but to optimize the resource efficiency of a deployment-ready target model with trusted accuracy by eliminating its redundant inference. Step 1 in Fig. 2 shows how redundancy measurement works.

Given the inference workload \(h \) and redundancy measurement \(f_h \), as Step 2 in Fig. 2, learning an input filter is defined as searching for a function \(g \) from a hypothesis family \(\mathcal{G} \) using a set of training samples \(\mathcal{S}' = \{(x_i, z_i)\}_{i=1}^p \), where \(x_1, ..., x_p \) are sampled independently with a distribution \(D' \) and \(z_i = f_h(h(x_i)) \). This learning problem is denoted by \((X, Z, f_h \circ h, \mathcal{G}, D', S') \), i.e., \(g \)'s target concept is the composite function of \(f_h \) and \(h \).

Inference with an input filter. Once an input filter \(g \) is trained, the inference workflow changes from Step 0 to Step 3 in Fig. 2. The input filter \(g \) becomes the entrance of the workload, which predicts the redundancy score \(z \) of each input \(x \). If not redundant, the inference model \(h \) will be directly executed on the input. Otherwise, we apply the \(h(x) \), which has two typical implementations: 1) **SKIP**: skipping the inference computation on the input \(x \) and returning a NONE result; 2) **REUSE**: reusing previously cached inference results. Sec. 3 will analyze SKIP and REUSE approaches theoretically, which can guide the usage of them. Sec. 4 will introduce our framework that unifies SKIP and REUSE approaches, and show how to determine whether it is redundant based on the predicted score and how to reuse previous results. Sec. 5 will present the detailed design of our input filtering system.

2.2 Validity Conditions

After defining an input filter, we now give the conditions that a "valid" input filter needs to meet for resource-efficient mobile inference. The input filter is designed to balance the resource and accuracy: filtering more inputs can save more resources, but it also brings a higher risk of incorrect inference results.

Inference accuracy. With an input filter, the inference result \(y \) for input \(x \) is returned either by executing \(h(x) \) or applying \(\hat{h}(x) \). Following previous work [5, 19, 40], the correctness of the result \(y \) refers to its consistency with the exact inference result by \(h(x) \), rather than the ground-truth label. An input filter’s inference accuracy \(Acc \) is defined as the ratio of correct results obtained by the inference workload with the filter.

Filtering rate. The filtering rate, denoted by \(r \), is defined as the ratio of filtered inputs (i.e., the ratio of results obtained by applying \(\hat{h} \)), which is also an important performance metric considered in previous work [5, 19, 40].

Overall cost. The overhead of an inference workload with an input filter needs to take \(g \), \(h \) and \(\hat{h} \) into consideration. Let \(C(\cdot) \) denote the cost of a certain function. For the cost of computation (e.g., runtime), the average cost per input changes from \(C(h) \) into \(C(g) + (1 - r)C(h) + rC(\hat{h}) \). The communication cost (e.g., bandwidth) depends on the deployment of the mobile-centric inference workload. On-device inference does not involve communication, while the overall bandwidth cost of offloading [5, 40] and model partitioning [75] deployments becomes the original cost multiplied by \((1 - r) < 1 \).

Based on the above metrics, we define an input filter as "valid" if it satisfies two conditions: 1) **Accurate enough**: \(Acc > T_{Acc} \), where \(T_{Acc} \) is the threshold of acceptable inference accuracy. 2) **Reduced overhead**: the overall cost with an input filter is lower than the original cost. If we aim to reduce the computation cost, we need \((C(g) + (1 - r)C(h) + rC(\hat{h}))/C(h) < 1 \), i.e., \(r > C(g)/(C(h) - C(\hat{h})) \). If we aim to reduce the communication cost, we only need \(r > 0 \).

3 Filterability Analysis

As mentioned in Sec.1, not all inference workloads have the optimization potential by using input filtering techniques. Given an inference workload in a mobile-centric AI application, is there a valid input filter? To answer this question, based on our formalization of the input filtering problem, we first define the filterability of an inference workload. Then we analyze filterability in three typical inference cases in SKIP settings, and discuss uncovered cases.
3.1 Definition of Filterability

Given the learning problem \((X, Y, c, H, D, S)\) of an inference model and the learning problem \((X, Z, f_h \circ h, G, D', S')\) of its input filter, to simplify the analysis, we make assumptions as follows: (1) \(D = D'\) i.e., the training samples follow the identical distribution; (2) \(S' = \{(x_i, z_i)\}_{i \in S}\), i.e., the two learning problems share the same inputs in their training samples. But they are supervised under different labels. The inference model \(h\) is supervised by \(y_i = c(x_i)\), while the input filter \(g\) is supervised by \(z_i = (f_h \circ h)(x_i)\). Our intuitive idea for filterability is that, if an inference workload is filterable, the learning problem of its input filter should have lower complexity than the learning problem of its inference model. Formally, we define filterability as follows:

Definition 2 (Filterability). Let \(\text{Complex}(\cdot)\) denote the complexity measurement of a hypothesis family. We say that the inference workload is filterable, if \(\text{Complex}(G) \leq \text{Complex}(H)\), where \(h \in H\) and \((f_h \circ h) \in G\).

Since the hypothesis family cannot be determined based only on input and output spaces, we use the family of the input filter’s target concept \(f_h \circ h\) as \(G\).

Now we can characterize the theoretically achievable accuracy and overhead of the input filter for a given inference model by leveraging computational learning theory [50]. It has been proven that, the more complex the hypothesis family is, the worse the bounds of generalization error. On the other hand, the hypothesis family of neural networks has a positive correlation with the number of parameters. For example, let \(W, L\) denote the number of weights and the number of layers in a deep neural network. The VC-dimension [65] (a measure of the hypothesis complexity) is \(O(WL \log(W))\) [23]. In the case of the same layer structure, the more parameters the higher the inference overhead of neural networks. The generalization error bound and the number of parameters correspond to the accuracy and efficiency metrics in validity conditions (§ 2.2), respectively, although they are not strict quantification. Therefore, if an inference workload is filterable, whose input filter has lower hypothesis complexity, we are confident to obtain a valid filter with sufficiently high accuracy and lower overhead than the inference model. Next, we will analyze the complexities of the hypothesis family of inference workload \(h\) and its input filter \(g\) in different cases.

3.2 Low-confidence Classification as Redundancy

Considering an inference workload, where the inference model is a binary classifier \(h\) that returns the classification confidence, and the redundancy measurement regards the classification result with confidence lower than a threshold \(t\) as redundant, i.e., \(f_h(y) = \text{sign}(y > t)\). Confidence-based classification is very common in mobile AI applications, such as speaker verification. We adopt the empirical Rademacher complexity [34], denoted by \(\tilde{R}_S(\cdot)\), as the complexity measurement, which derives the following generalization bounds [50]:

Theorem 3 (Rademacher complexity bounds). Let \(H\) be a family of hypothesis taking values in \((-1, +1)\). Then for any \(\delta > 0\), with probability at least \(1 - \delta\), the following holds for all \(h \in H\):

\[
R(h) \leq \tilde{R}(h) + \tilde{R}_S(H) + 3 \sqrt{\frac{\log(2/\delta)}{2m}},
\]

where \(R(h)\) and \(\tilde{R}(h)\) denote the empirical and generalization errors, and \(m\) is the number of training samples.

This theorem shows that the higher a hypothesis family’s empirical Rademacher complexity, the worse the bounds of its generalization error. The classification confidence-based redundancy measurement creates two hyperplanes parallel to \(h = 0\): points between them are considered redundant, and points outside them are considered not redundant. Thus, the hypothesis family of the input filter’s target concept has the form: \(G = \{\text{sign}(h(x)(h(x) + b))\}\), where \(h \in H\) and \(b \in \mathbb{R}\). Then we have proven the following lemma, which shows that the discussed inference workload is **not** filterable.

Lemma 4. Let \(H\) be a family of binary classifiers taking values in \((-1, +1)\). For \(G = \{\text{sign}(h(x)(h(x) + b))\}\) where \(h \in H, b \in \mathbb{R}\):

\[
\tilde{R}_S(G) \geq \tilde{R}_S(H),
\]

Proof. By definition, \(\tilde{R}_S(H) = E_\sigma[\sup_{h \in H}(\frac{1}{m} \sum_{i=1}^{m} \sigma(h(x_i)))\]

and \(\tilde{R}_S(G) = E_\sigma[\sup_{h \in H}(\frac{1}{m} \sum_{i=1}^{m} \sigma(h(x_i)(h(x_i) + b)))\]

where Rademacher variables \(\sigma_i \in \{-1, +1\}\) By fixing \(b = 2,

\[
\tilde{R}_S(G) \geq E_\sigma[\sup_{h \in H}(\frac{1}{m} \sum_{i=1}^{m} \sigma(h(x_i)(h(x_i) + 2)))]
\]

\[
= E_\sigma[\sup_{h \in H}(\frac{1}{m} \sum_{i=1}^{m} \sigma(h(x_i)))] = \tilde{R}_S(H),
\]

where we used the fact that \(\text{sign}(h(x_i) + 2) \equiv 1\).

Square-class classifiers can be treated as a set of confidence scoring functions, one for each class. The above lemma can also be applied to derive that multi-class classifiers using such a confidence-based redundancy measurement are not filterable either.

3.3 Class Subset as Redundancy

Considering the inference model \(h\) as a multi-class mono-label classifier and \(Y = \{y_1, ..., y_l\}\). Then its hypothesis family \(H\) has the form: \(H = \{\text{max}(h_1, ..., h_l) : h_i \in H_i, i \in [1, l]\}\), where \(h_i\) returns the probability of the \(i\)-th class. The redundancy measurement checks whether the predicted class belongs to a specific subset, i.e., \(f_h(y) = 1(y \in Y')\), where \(Y' \subseteq Y\). It is common in mobile applications to select only a subset of labels for use. For example, when deploying a pre-trained common object detector [41] on a drone for traffic monitoring, we only care about the labels of vehicles and pedestrians, while considering other labels like animals and trees as redundancy. With the class subset-based redundancy measurement, the hypothesis family of the input filter’s target concept has the form: \(G = \{\text{max}(h_i) : y_i \in Y'\}\). We have proven the following lemma, which shows that the discussed inference workload is **filterable**.

Lemma 5. Let \(H_1, ..., H_l\) be l hypothesis sets in \(\mathbb{R}^k, l \geq 1\), and let \(H = \{\text{max}(h_1, ..., h_l) : h_i \in H_i, i = 1, ..., l\}\). For \(G = \{\text{max}(h_i) : i \in [1, l]\}\):

\[
R(h) \leq \tilde{R}(h) + \tilde{R}_S(H) + 3 \sqrt{\frac{\log(2/\delta)}{2m}},
\]
whether the returned value is larger than a threshold, i.e., \(f_1 \). Here we only give one necessary condition: the inference result is
determine the hypothesis family of the input filter’s target concept.

assess complexity, like reinforcement learning [13] and structured
some inference tasks that are challenging to measure the hypoth-
cally ill-defined. We believe that our problem formalization and
filterability of other tasks in the future work.

analysis approach are general, based on which we will analyze the

3.4 Regression Bound as Redundancy
Considering a bounded regression model \(h \), whose outputs are
bounded by \(M \in \mathbb{R} \) that \(|h(x) - c(x)| \leq M \) (recall that \(c \) is
the target concept) for all \(x \in X \). The redundancy measurement checks
whether the returned value is larger than a threshold, i.e., \(f_k(y) = 1(y > T) \). As an example, face authentication on mobile devices
usually requires the coordinates of the detected face to be within
the specified range. Then learning the target concept of input filter
comes to learning a regression model whose outputs are bounded
by \(T \), where \(T < M \). We also adopt the empirical Rademacher
complexity and have the following theorem [50]:

Theorem 6. Let \(p \geq 1 \) and \(\mathcal{H} = \{ x \mapsto |h(x) - c(x)|^p : h \in \mathcal{H} \} \). Assume that \(|h(x) - c(x)| \leq M \) for all \(x \in X \) and \(h \in \mathcal{H} \). Then the
following inequality holds: \(\mathcal{R}_S(\mathcal{H}) \leq pM^{p-1}\mathcal{R}_S(H) \).

Since \(M > T \), this theorem shows that the upper bound of \(\mathcal{R}_S(\mathcal{G}) \)
is tighter than the upper bound of \(\mathcal{R}_S(H) \). So we can be confident
that the bounded regression inference workload discussed is filter-
able.

3.5 Discussions
Guidance for applying SKIP. The above results are derived in
SKIP settings. Our experiments (§ 6.3) show that the theoretically
filterable cases achieve significantly better filtering performance
than the cases that are not filterable. So our filterability analysis can
reveal the optimization potential by using SKIP filters, and explain
the filtering performance.

Other inference tasks. Classification and regression are the most
common inference tasks, and the three redundancy measurements
discussed are widely adopted [5, 71, 72]. However, there are
some inference tasks that are challenging to measure the hypoth-
esis complexity, like reinforcement learning [13] and structured
learning [12]. Besides, their redundancy measurements are typically
ill-defined. We believe that our problem formalization and analysis approach are general, based on which we will analyze the
filterability of other tasks in the future work.

Characteristics of REUSE. For REUSE approach, we cannot
determine the hypothesis family of the input filter’s target concept.
Here we only give one necessary condition: the inference result is
discrete or can be discretized. For example, classification and count-
ing models return discrete outputs. But continuous localization
coordinates of detection models cannot be reused directly, unless
reusing detection results with high IoU are regarded as correct, which is equivalent to discretizing the outputs.

4 FRAMEWORK
In this section, we first propose a novel input filtering framework
that unifies SKIP and REUSE approaches. Then we discuss how
existing approaches are covered by our framework and their limi-
tations. Finally we present the key design, end-to-end learnability,
and advantages it brings.

4.1 SKIP as REUSE
We unify SKIP and REUSE approaches based on the idea that:

SKIP equals to REUSE the NONE output of \(h(\hat{0}) \).

Suppose we have an all-zero input \(\hat{0} \) and apparently its inference
result can be interpreted as NONE. Then given a new input \(x \), if it is
similar to \(\hat{0} \) in the feature space, we can REUSE the cached NONE
result, i.e., we SKIP the inference computation. The key to reuse is
to measure the semantic similarity between the current input
and previously cached ones. However, it is difficult to accurately
measure semantic similarity directly based on the raw input. As
Step 1 in Fig. 3 illustrated, our framework first computes the feature
embedding of each raw input. Taking a pair of inputs \(x, x' \), then our
framework applies a difference function \(d \) on their corresponding
embeddings \(e, e' \) and feeds the result into a classifier that predicts a
single scalar \(z \). Under this framework, for SKIP, we fix \(x' \) as an all-
zero input \(\hat{0} \), then the process degenerates to a binary classification
task that takes \(x \) as input and returns the prediction \(z \). In this way,
our framework unifies SKIP and REUSE approaches, with only
difference in interpretation of the value \(z \). For REUSE, we interpret
\(z \) as the distance between two inputs. For SKIP, we interpret \(z \) as the
probability that input \(x \) is not redundant.

4.2 Inference with an Input Filter
For the inference phase, as shown in Step 2 in Fig. 3, SKIP and
REUSE filters only differ in the inputs of the difference function \(d \).

1. **Training Phase** (§5.3)

 \[x \rightarrow \text{Siamese Feature Embedding} \rightarrow e \rightarrow d \rightarrow \text{Classifier} \rightarrow z \]

 SKIP: \[x \rightarrow \text{Feature Embedding} \rightarrow e \rightarrow d \rightarrow \text{Classifier} \rightarrow z \]

 REUSE: \[x \rightarrow \text{Feature Embedding} \rightarrow e \rightarrow d \rightarrow \text{Classifier} \rightarrow z \]

 \[e : y \rightarrow \text{Table} \]

 2. Inference Phase (§5.4)

 - **SKIP:** \[x \rightarrow \text{Feature Embedding} \rightarrow e \rightarrow d \rightarrow \text{Classifier} \rightarrow z \]
 - **REUSE:** \[x \rightarrow \text{Feature Embedding} \rightarrow e \rightarrow d \rightarrow \text{Classifier} \rightarrow z \]

 Figure 3: Unified and end-to-end learnable framework for both SKIP and REUSE input filtering.
classifier. We can set a threshold on the predicted redundancy score \(z \) to determine whether to skip. (2) **REUSE:** Inference with a REUSE filter needs to maintain a key-value table, where a key is a feature embedding and its value is the corresponding inference result. For an arrived input \(x \), the trained feature embedding network returns its embedding \(e \) and the distances \(z \) between \(e \) and cached keys are computed by the difference function \(d \) and the trained classifier. Then we can leverage classification algorithms, e.g., KNN, to obtain the reusable cached results.

4.3 Sub-instance Approaches

Here we explain how our framework covers three state-of-the-art input filtering methods [5, 19, 40] that will be used for comparison in our evaluations.

Sub-instance 1: FilterForward (FF) [5] is a SKIP method for image input. FF uses a pre-trained MobileNet’s intermediate output as the feature embedding. Then it trains a “micro-classifier” that consists of convolution blocks to make the binary decision for filtering.

Sub-instance 2: FoggyCache (FC) [19] is a REUSE method for image and audio input. FC uses low-level features (SIFT for image, MFCC for audio) and applies locality-sensitive hashing (LSH) for embedding. Then FC uses L2 norm as the difference function and applies KNN to get the reusable inference results from previously cached ones.

Sub-instance 3: Reducto [40] is a variant of SKIP method for video input. It measures low-level feature (pixel, edge, corner, area) difference between successive frames. If they are similar enough, Reducto skips the current frame and returns the latest result. Formally, let \(x \) be the current frame and \(x' \) be the previous frame. Reducto defines \(d(e, e') = (e - e')/e' \), where \(e, e' \) are low-level features of \(x, x' \). It uses a threshold function as the classifier, i.e., \(1(d(e, e') > T) \).

Limitations of sub-instances. First, the existing non-end-to-end methods lack theoretical abstraction of the problem. They split the filtering task into sub-modules and propose bespoke solutions for each module, leading to difficulty in performing theoretical analysis. Second, though the handcrafted features (like Pixel and SIFT [19, 40]) or pre-trained feature embeddings (like MobileNet [5]) are very efficient, they are not optimal in accuracy [17] and result in limited support for input modalities and unguaranteed discriminability to diverse tasks. Input modalities like text and sensor signals are also very common for mobile AI applications, which, however, haven’t been supported by existing filters yet. Our experiments also show that these non-end-to-end learned features are poorly discriminative in many cases.

4.4 End-to-end Learnability

To obtain feature with robust discriminability for diverse data modalities and inference tasks in mobile applications, a key design principle of our framework is the end-to-end learnability. End-to-end learning system casts complex processing components into coherent connections in deep neural networks [17] and optimizes itself by applying gradient-based back-propagation algorithms all through the networks. Deep end-to-end models have shown state-of-the-art performance on various tasks including autonomous driving [54] and speech recognition [2]. As aforementioned, a main component of our unified framework is to measure the semantic similarity between two inputs. To make our framework end-to-end learnable, we leverage the metric learning [37] paradigm, whose goal is to learn a task-specific distance function on two objects. The metric learning paradigm turns the fixed difference function \(d \) (e.g., Euclidean distance and L2 norm) used by existing methods into an end-to-end learnable network. Within the metric learning paradigm, we adopt Siamese network structure [36] for feature embedding to support two inputs and flexible input modalities. Siamese network uses the same weights while working on two different inputs to compute comparable output vectors, and has been successfully applied in face verification [58], pedestrian tracking [38], etc. We can flexibly implement the Siamese feature embedding by incorporating different neural network blocks to learn modality-specific features in an end-to-end manner, instead of tailoring handcrafted or pre-trained feature modules. Our experimental results show that our end-to-end learned features have robust discriminability to diverse inference workloads in mobile-centric AI applications.

5 DESIGN OF INFi

Based on our input filtering framework, in this section, we present the concrete design of InFi (Input Filter), which supports both SKIP and REUSE functions, named InFi-Skip and InFi-Reuse. The design of InFi has four key components: feature embedding, classifier, training mechanism, and inference algorithm. We also discuss diverse deployments of InFi in AI applications on mobile, edge, and cloud devices.

5.1 Feature Networks for Diverse Input Modalities in Mobile-centric AI

InFi supports filtering inference workloads with six typical input modalities in mobile applications: text, image, video, audio, sensor signal, and feature map. We develop a collection of modality-specific feature networks as building blocks for learning feature embedding. Our major consideration in designing these feature networks is resource efficiency on mobile devices.

Text modality (\(g_{\text{text}} \)). Text is tokenized into a sequence of integers, where each integer refers to the index of a token. We adopt the word-embedding layer to map the sequence to a fixed-length vector by a transformation matrix and use a densely connected layer with a Sigmoid activation to learn the text features.

Image modality (\(g_{\text{image}} \)). We use depth-wise separable convolution [11], denoted by SepConv, to learn visual features. SepConv is a parameter-efficient and computation-efficient variant of the traditional convolution which performs a depth-wise spatial convolution on each feature channel separately and a point-wise convolution mixing all output channels. Then we build residual convolution blocks [24] ConuRes as follows:

\[
\text{ConuRes}(x) = \text{LN}(\text{SepConv}(\text{ReLU}(x))),
\]

\[
c_1(x) = \text{ConuStep}(x), c_2(x) = \text{ConuStep}(c_1(x)),
\]

\[
\text{ConuRes}(x) = \text{MaxPool2D}(c_2(x)) + \text{ConuStep}(x),
\]

where \(\text{ReLU} \) denotes the rectified linear unit, \(\text{LN} \) denotes the layer normalization and \(\text{MaxPool2D} \) denotes the 2D max-pooling layer. Finally, we build the image feature network with two residual blocks
followed by a global max-pooling layer and a Sigmoid-activated dense layer.

Video modality (g_{video}). For video modality, we need to represent not only the spatial but also the temporal features. Given a window of frames, we stack one residual block for each frame and then concatenate their resulting feature maps. Except for the first residual block, the video feature network performs the same operation as the image feature network.

Audio modality (g_{audio}). We consider audio inputs in the form of either a 1D waveform or a 2D spectrogram and use the same structure as image feature networks to learn features from audio.

Sensor signal and feature map modality (g_{sensor}). Motion sensors are widely used in mobile devices and play a key role in many smart applications, e.g., gyroscope for augmented reality [29] and accelerometer for activity analysis [3]. Feature maps refer to the intermediate outputs of deep models and need to be transmitted in workloads that involve model partitioning [75]. We consider these two types of input as a vector with fixed shape and use two densely connected layers to learn the feature embedding from the flattened vector.

Flexible support for input modalities. Our design provides a flexible support for diverse input modalities in mobile-centric AI applications. We can easily integrate a modality-specific neural network from advanced machine learning research as the feature network block into our framework, so as to learn feature embeddings in the end-to-end way.

5.2 Task-agnostic Classifier

Each feature network g_{modality}, where modality belongs to {text, image, video, audio, vec}, takes x as input and output the embedding emb. We add a dropout layer after the last dense layer of feature networks to avoid overfitting. Following previous design of Siamese networks [36], we use the absolute difference as the function d. Let emb_1, emb_2 denote the embedding outputs of two inputs x_1, x_2. The classifier is defined as $g_{cls} = \sigma(\sum_j w_j(emb^{1)(j)} - emb^{2)(j)} + b)$, where $emb^{(j)}$ denotes the j-th element in the embedding vector. To sum up, the input filter function $g : X \rightarrow Z$ can be defined as $g(x) = (g_{cls} \circ g_{modality})(x)$. With a proper implementation, the modality of input data can be automatically detected without manually setting.

5.3 End-to-end Training

InFi-Skip and InFi-Reuse share the same model architecture, but have different formats of training data. 1) Learning an InFi-Skip filter uses the same paradigm as training a binary classifier. Thus its training samples are $(x_i, f_h(h(x_i)))_{i=1}^n$. In practice, we can use the original training set of h or data collected during serving h. Since f_h only depends on the inference result, the supervision labels can be collected automatically. We use the binary cross-entropy loss function $L = z \log(g(x)) + (1 - z) \log(1 - g(x))$, where z denotes the redundancy measurement label. 2) InFi-Reuse filters are trained using the contrastive loss [21] with a margin parameter of one. Given a set of input and their discrete inference results, the redundancy measurement is defined as the distance metric between a pair of inputs. Formally, a training sample consists of a pair of inputs and their distance label $(x_i, x_j, 1(y_i \neq y_j))$.

<table>
<thead>
<tr>
<th>Algorithm 1: Inference with an InFi Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>input: input source src, redundancy threshold T, cache size s, KNN parameter K, homogeneity threshold θ_f</td>
</tr>
<tr>
<td>def InFiSkip(src):</td>
</tr>
<tr>
<td>while $x \leftarrow \text{read(src)}$ do</td>
</tr>
<tr>
<td>if $g(x) > T$ then $y \leftarrow \text{inference}(x)$;</td>
</tr>
<tr>
<td>else $y \leftarrow \text{None}$;</td>
</tr>
<tr>
<td>def InFiReuse(src):</td>
</tr>
<tr>
<td>Initialize empty cache;</td>
</tr>
<tr>
<td>while $x \leftarrow \text{read(src)}$ do</td>
</tr>
<tr>
<td>if $\text{Len}(\text{cache}) < s$ then</td>
</tr>
<tr>
<td>$y \leftarrow \text{inference}(x)$;</td>
</tr>
<tr>
<td>cache[$g_{\text{modality}}(x)$] $\leftarrow y$;</td>
</tr>
<tr>
<td>else</td>
</tr>
<tr>
<td>$y, \theta \leftarrow \text{HKNN}($cache, $g_{\text{modality}}(x), g_{\text{cls}}, K$);</td>
</tr>
<tr>
<td>if $\theta < \theta_f$ then</td>
</tr>
<tr>
<td>$y \leftarrow \text{inference}(x)$;</td>
</tr>
<tr>
<td>replace (cache, $g_{\text{modality}}(x) : y$);</td>
</tr>
</tbody>
</table>

We can optimize all trainable parameters end-to-end, using standard back-propagation algorithms. In this paper, we focuses on the potential of end-to-end learnability and regard the training of filters as an offline process. In the future, we will consider the dynamic nature of data content and explore online update of InFi.

5.4 Inference Phase

After training an InFi filter, we integrate it into the original inference workload using Alg. 1. **InFi-Skip.** We set a redundancy threshold for InFi-Skip to determine whether to skip the current input. And if we skip the input, InFi-Skip will return a NONE result, whose interpretation depends on the redundancy measurement in specific applications. For example, NONE means no face detected in face detection, 0 vehicle in vehicle counting application, meaningless speech in speech recognition, etc.

InFi-Reuse. To reuse previous inference results, we need to maintain a cache whose entry is a key-value pair of an input embedding and its inference results. Following the previous RESUSE approach [19], we adopt K-Nearest Neighbors (KNN) algorithm to reuse cached results. But it is possible that a new input is not similar with any cached entries, i.e., a cache miss. We adopt Homogenized KNN (H-KNN) [19] algorithm to handle this problem, which calculates a homogeneity score θ of the found K nearest neighbors and sets a threshold θ_f on the homogeneity score to detect the cache miss. Then we can replace entries using policies like least frequently used (LFU), denoted by repLace in Alg. 1. Different from original KNN that typically uses Euclidean distance, which is non-parametric, we set the distance measurement as the trained g_{cls}. We denote HKNN(cache, emb, g_{cls}, K) as the H-KNN function which returns the majority inference result of K nearest neighbors of emb in cache.keys using the g_{cls} to calculate the distance between embeddings, and computes θ. We focus on taking the advantage of end-to-end learnability, and other subtle optimization opportunities such as cache warm-up are out of the scope of this work.
5.5 Mobile-centric Deployments

Unlike existing work tailored for specific deployment, e.g., inference offloading [5, 19, 40], \textit{InFi} supports diverse mobile-centric deployments: (1) \textbf{On-device}: both inference model and input filter are deployed on one device; (2) \textbf{Offloading}: the input filter is deployed on one device, and the inference model is deployed on another device. (3) \textbf{Model Partitioning (MP)} [75]: the inference model is partitioned across two devices, and the input filter is deployed with the first part. MP is a promising approach to collaboratively make use of the computing resources of mobile and edge devices [44, 61] and better protect the privacy of mobile data [51]. For MP deployment, the filter’s input is the feature map, so existing filtering approaches [5, 19, 40] cannot be applied. Due to the support of feature map modality, \textit{InFi} is the first input filter that can be applied in model partitioning workloads. Fig. 4 illustrates the three typical deployments on mobile and edge devices. Note that \textit{InFi} is not limited to systems with a single mobile and edge node. For example, training one filter per server, or changing one filter’s binary classifier into a multi-category one (one bit per server), \textit{InFi}-Skip can be used in the multi-tenancy context [5].

6 EVALUATION

In this section, we evaluate \textit{InFi} in 12 mobile-centric AI applications, covering six input modalities. The comparisons with three strong baselines [5, 19, 40] show that \textit{InFi} has wider applicability and outperforms them in both accuracy and efficiency. Compared with a native vehicle counting workload in a city-scale video analytics application, \textit{InFi-Skip} / \textit{InFi-Reuse} can achieve 1.59-2.9× / 1.87-8.5× throughput and save 66.5-70.7% / 91.1-95.0% bandwidth, respectively, while keeping over 90% inference accuracy (see Tab. 5). Experiments also confirm the theoretical results in Sec. 3.

6.1 Implementation and Configurations

We implemented \textit{InFi} \footnote{https://github.com/yuanmu97/infi} in Python. We build all feature networks and classifiers with TensorFlow 2.4 [60], and train them using the RMSprop [26] optimizer. Learning rate is set as 0.001, batch size is 32, and the number of training epochs is 20. In the text feature network, the output dimension of embedding layer is 32. In image, video, and audio feature networks, we use 32 and 64 convolution kernels in the two residual blocks. We use 128 units in the first dense layer in vector feature networks. The last dense layer of all models is 32, and the number of training epochs is 20. In the text feature network, we use UCI HAR dataset [3] for motion signal-based human activity recognition, and deploy an transformer-based model [18]. (3) We use MoCap dataset [14] for facial recognition and deploy an LSTM-based model [10]. (4) We use MoCap dataset [14] for facial recognition and deploy an LSTM-based model [10], and deploy it as the inference workload. (5) We collected a video dataset, named City Traffic, from a real city-scale video analytics platform. We collected 48 hours of videos (1FPS) from 10 cameras at road intersections and deploy YOLOv3 re-implemented with TensorFlow 2.0 [76] to count the number of vehicles in video frames. All deployed inference models load publicly released pretrained weights. And we split each dataset for training and testing by 1:1. To evaluate \textit{InFi}’s wide applicability, we choose 10 inference workloads that cover six input modalities and three deployments (see Tab. 1). Five datasets are used: (1) We reprocessed a standard video dataset, Hollywood2 [46], to create four different input modalities: video clip, image, audio and text. An action classification model [62] is deployed on the original video clips. Images are sampled from the video clips and a face detection [56], a pose estimation [6] and a gender classification [56] models are deployed. Audio is extracted from each video clip and we deploy a speech recognition model [2]. Text is the caption generated on sampled images by an image captioning model [69]. A named entity recognition model [27] and a sentiment classification model [35] are deployed. (2) We use ESC-10 dataset [53] for audio anomaly detection and deploy an transformer-based model [18], (3) We use UCI HAR dataset [3] for motion signal-based human activity recognition and deploy a LSTM-based model [10]. (4) We use MoCap dataset [14] for training a motion signal-based user identification (12 users) model, using a LSTM-based architecture [10], and deploy it as the inference workload. (5) We collected a video dataset, named City Traffic, from a real city-scale video analytics platform. We collected 48 hours of videos (1FPS) from 10 cameras at road intersections and deploy YOLOv3 re-implemented with TensorFlow 2.0 [76] to count the number of vehicles in video frames. All deployed inference models load publicly released pretrained weights. And we split each dataset for training and testing by 1:1 (Hollywood2 and UCI HAR are split randomly, while City Traffic is split by time on each camera).

Devices and deployments

We use an edge server with one NVIDIA 2080Ti GPU and three mobile platforms: (1) NVIDIA JETSON TX2 [63], (2) XIAOMI Mi 5, and (3) HUAWEI WATCH. All device-independent metrics are tested on the edge. For vehicle counting, we test three deployments: on-device, offloading, and model partitioning (see Sec. 5.5).

Baselines

We adopt three strong baselines: FilterForward (FF) [5], Reducto [40], and FoggyCache (FC) [19]. See Sec. 4.3 for details of

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Modality</th>
<th>Inference Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hollywood2</td>
<td>Image</td>
<td>Face Detection (FD)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pose Estimation (PE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gender Classification (GC)</td>
</tr>
<tr>
<td>ESC-10</td>
<td>Audio</td>
<td>Anomaly Detection (AD)</td>
</tr>
<tr>
<td>UCI HAR</td>
<td>Motion Signal</td>
<td>Activity Recognition (HAR)</td>
</tr>
<tr>
<td>MoCap</td>
<td>Motion Signal</td>
<td>User Identification (UI)</td>
</tr>
<tr>
<td>City Traffic</td>
<td>Video Stream</td>
<td>Vehicle Counting (VC)</td>
</tr>
<tr>
<td></td>
<td>Feature Map</td>
<td>Vehicle Counting (VC-MP)</td>
</tr>
</tbody>
</table>

Table 1: Datasets and Inference Workloads
baselines. For workloads with no existing method presented (to our best knowledge), we tested a method dubbed Low-level that first computes low-level embedding for inputs (MFCC for audio, Bag-of-Words for text, raw data for motion signal and feature map). Then Low-level uses K-nearest neighbors vote (K=10) for both SKIP and REUSE cases. We also deployed YOLOv3-tiny [1] model for vehicle counting and a lightweight pose estimation model [52] to compare input filtering and model compression techniques.

6.2 Inference Accuracy vs. Filtering Rate
First, we test two device-independent metrics (inference accuracy and filtering rate) on the ten inference workloads. We adjust the confidence threshold in FF, Reducto and InFi-Skip, and the ratio of cached inputs in FC and InFi-Reuse, from 0 to 1 with 0.01 interval.

Redundancy measurements. (1) SKIP: For FD (PE), outputs with no detected face (person keypoints) are redundant. For GC (SC), outputs with classification confidence less than a threshold, CONF, are redundant. For AC, outputs that are not in a subset of classes, Sub, are redundant. For SR, outputs with the number of recognized words less than a threshold, N, are redundant. For NER, outputs without entity label “PERSON” are redundant. For HAR, outputs that are not “LAYING” are redundant. For UI, outputs that do not belong to the first 6 users are redundant. For AD, outputs that are not in “Cry, Sneeze, Firing” (anomaly events) are redundant. For VC and VC-MP, outputs with zero count are redundant. (2) REUSE: Experimental results show that cache miss happens rarely, so the homogeneity threshold is set as 0.5. We regard inputs that hit the cache as redundant. For the VC (-MP), since we have 86K images from each camera, a fixed cache ratio can lead to serious inefficiency in the KNN algorithm. We fix the cache size as 1000 and reinitialize the cache every 5000 frames. For other inference workloads, we set a fixed cache size according to the cache ratio.

Overview of results. Tab. 2 and Tab. 3 summarize the results of SKIP and REUSE methods. Following related work [40], we report the filtering rates at 90% inference accuracy. The optimal results are computed by \((1-0.9)r_N\) where \(r_N\) denotes the ratio of redundant inputs in the test dataset. Results show that InFi-Skip outperforms FF and Reducto on all 10 workloads with significantly higher filtering rate and wider applicability. Similarly, InFi-Reuse significantly outperforms FC on all 6 applicable workloads. InFi-Skip can filters 18.9%-91.2% inputs and InFi-Reuse can filters 32.1%-98.8% inputs, while keeping more than 90% inference accuracy. For all workloads, Low-level method cannot achieve 90% inference accuracy unless no input is filtered (i.e. 0.0% filtering rate), and we omit these results in the tables.

Feature discriminability. By comparing FF and InFi on FD, PE, GC, and AC workloads, we evaluate the discriminability of our end-to-end learned features. As shown in Fig. 5, FF works on the pose estimation workload, but not on the face detection workload. The “Worst” case is calculated by \(r = 1 - Acc\). The reason may be that there is a “person” label in the ImageNet dataset, so the pretrained feature embedding in FF is discriminative for determining whether there is a human pose. However, on other tasks (e.g., FD, GC and AC), the pretrained features are not discriminative and FF can only provide two extreme filtering policies: either filtering all input or filtering nothing, which is useless in practice. On the contrary, InFi-Skip learns feature embedding with robust discriminability and performs well on all four workloads. With over 90% inference accuracy, InFi-Skip can filter 18.9% and 36.1% inputs for PE and FD workloads, respectively.

Transferability. One interesting question is, how transferable is the trained filter to workloads with a looser or tighter redundancy measurement? We set the minimal number of recognized words,
HAR Reuse

REUSE Methods

Model Complexity

Filtering Rate

Filtering Rate
As we discussed in Sec. 2.2, a “valid” filter should be both accurate and lightweight. The above results have shown that InFi can filter significant amount of inputs while keeping accurate inference. Now, we consider two device-independent metrics: Float Operations (FLOPs) and the number of Parameters (Param#). We choose standard CNNs models, FF and InFi with image feature network for comparison. The FLOPs is calculated by TensorFlow profiler API float_operation. As shown in Tab. 4, even compared with MobileNetV1 which is designed for efficiency, InFi reduces about 70% FLOPs and 99.4% parameters. FF (full frame) denotes the overall model that consists of the first 43 layers of MobileNetV1 and the full-frame micro-classifier proposed by FF. In the training phase, InFi (image modality) takes around 710 ms per batch (batch size is 32) and requires 5337 MB GPU memory which most commercial GPUs can meet. InFi for other input modalities requires far less resources, e.g., InFi (vector) tasks 3 ms per batch and needs only 435 MB memory. Next, we test the latency and energy in the inference phase on mobile platforms. As a fair comparison, we chose the TFLite-optimized MobileNetV1 [49], which is one of the most efficient CNNS on mobile devices. As shown in Fig. 12, on three mobile platforms, InFi with the image feature network costs only 12-25% runtime of MobileNetV1. The average energy costs of InFi are 14.4/79.7 mJ per frame, which are much lower than MobileNetV1 (410.4/803.8 mJ per frame) on the phone/smartwatch. We implement InFi with MindSpore [48] and the results show that InFi’s low-energy consumption and low-latency execution do not depend on the implementation framework.

6.4 Computation and Resource Efficiency

Now, we evaluate the overall performance of inference workloads in real systems with three ways of deployments. First, we consider the vehicle counting workload: 1) on-device: InFi (image) and YOLOv3 model on TX2; 2) offload: InFi (image) on TX2 and YOLOv3 model on edge; 3) model partitioning (MP): first 39 layers (10 convolution blocks) of YOLOv3 and InFi (feature map) on TX2, rest of YOLOv3 on edge server. The average throughput of YOLOv3 model on TX2 and edge is 3.2 FPS and 22.0 FPS, respectively. For MP deployment, the edge-side model serves 24.5 FPS. We report the average throughput and the bandwidth saving of using InFi-Skip and InFi-Reuse, with over 90% inference accuracy, in Tab. 5. As a fair comparison, we test the throughput of YOLOv3-tiny [1] model, a compressed version for YOLOv3. The FLOPs is calculated by TensorFlow profiler with image feature network costs 273 ms per batch and needs 435 MB memory. Next, we test the latency and energy in the inference phase on mobile platforms. As a fair comparison, we chose the TFLite-optimized MobileNetV1 [49], which is one of the most efficient CNNS on mobile devices. As shown in Fig. 12, on three mobile platforms, InFi with the image feature network costs only 12-25% runtime of MobileNetV1. The average energy costs of InFi are 14.4/79.7 mJ per frame, which are much lower than MobileNetV1 (410.4/803.8 mJ per frame) on the phone/smartwatch. We implement InFi with MindSpore [48] and the results show that InFi’s low-energy consumption and low-latency execution do not depend on the implementation framework.

6.5 Different Mobile-centric Deployments

Now we evaluate the overall performance of inference workloads in real systems with three ways of deployments. First, we consider the vehicle counting workload: 1) on-device: InFi (image) and YOLOv3 model on TX2; 2) offload: InFi (image) on TX2 and YOLOv3 model on edge; 3) model partitioning (MP): first 39 layers (10 convolution blocks) of YOLOv3 and InFi (feature map) on TX2, rest of YOLOv3 on edge server. The average throughput of YOLOv3 model on TX2 and edge is 3.2 FPS and 22.0 FPS, respectively. For MP deployment, the edge-side model serves 24.5 FPS. We report the average throughput and the bandwidth saving of using InFi-Skip and InFi-Reuse, with over 90% inference accuracy, in Tab. 5. As a fair comparison, we test the throughput of YOLOv3-tiny [1] model, a compressed version for YOLOv3. The inference accuracy of YOLOv3-tiny is only 67.9% which does not meet the 90% target. Breaking down the overheads, InFi’s inference costs around 3 ms per frame and the average latency of KNN is 6 ms per frame with K=10 and cache size=1000. Achieving over 90% inference accuracy, InFi-Skip improves the throughput to 9.3/55.2/39.0 FPS for on-device/offload/MP deployments, respectively. Apparently, in vehicle counting workloads, there are more filtering opportunities for InFi-Reuse. InFi-Reuse improves the throughput to 27.2/77.2/46.0 FPS for these three deployments. Except the on-device deployment that does not involve cross-device data transmission, InFi-Skip / InFi-Reuse also save 66.5% / 91.1% and 70.7% / 95.0% bandwidth for offloading and MP workloads. Unlike YOLOv3-tiny which trades a significant and fixed loss of accuracy for efficiency, InFi provides

InFi: End-to-end Learnable Input Filter for Resource-efficient Mobile-centric Inference

AC MobiCom ’22, October 24–28, 2022, Sydney, NSW, Australia
Table 5: Throughput (FPS) / Bandwidth saving (%) of vehicle counting workloads. Acc. denotes inference accuracy, compared with vehicle count results of YOLOv3.

<table>
<thead>
<tr>
<th>Workload</th>
<th>YOLOv3</th>
<th>InFi-Skip</th>
<th>InFi-Reuse</th>
<th>YOLOv3-tiny</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc. (%)</td>
<td>100</td>
<td>90.3</td>
<td>90.5</td>
<td>67.9</td>
</tr>
<tr>
<td>On-device</td>
<td>3.2/-</td>
<td>9.3/-</td>
<td>27.2/-</td>
<td>20.4/-</td>
</tr>
<tr>
<td>Offloading</td>
<td>22.0/-</td>
<td>55.2/66.5</td>
<td>77.2/91.1</td>
<td>225.3/-</td>
</tr>
<tr>
<td>MP</td>
<td>24.5/-</td>
<td>39.0/70.7</td>
<td>46.0/95.0</td>
<td>230.4/-</td>
</tr>
</tbody>
</table>

Table 6: Throughput (FPS) / Bandwidth saving (%) of pose estimation workloads.

<table>
<thead>
<tr>
<th>Workload</th>
<th>OpenPose</th>
<th>InFi-Skip</th>
<th>OpenPose-light</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inference Accuracy (%)</td>
<td>100</td>
<td>90.1</td>
<td>76.5</td>
</tr>
<tr>
<td>On-device</td>
<td>15.4/-</td>
<td>18.0/-</td>
<td>28.1/-</td>
</tr>
<tr>
<td>Offloading</td>
<td>27.7/-</td>
<td>31.5/18.9</td>
<td>98.5/-</td>
</tr>
<tr>
<td>MP</td>
<td>29.2/-</td>
<td>33.1/20.2</td>
<td>102.4/-</td>
</tr>
</tbody>
</table>

determine whether to transmit the input image to the server with offloaded model. Reducto [40] performs on-device frame filtering by thresholding difference of low-level features between successive frames. Through elaborate selection for different tasks, low-level features can efficiently and accurately measure the difference.

Inference caching. Potluck [20] stores and shares inference results between augmented reality applications. It dynamically tunes the threshold of input similarity and manages cache based on the reuse opportunities. FoggyCache [19] is more general and can be applied to both image and audio inputs. It designs adaptive LSH and homogenized KNN algorithms to address practical challenges in inference caching. Instead of caching the final inference results, DeepCache [70] stores the intermediate feature maps to achieve more granular reuse. For object recognition, Glimpse [9] maintains a cache of video frames on mobile devices. It uses cached results to perform on-device object tracking and sends only trigger frames to the server with offloaded recognition model.

Approaches tailored for specific pipelines. Focus [28] is designed for querying detected objects in video database and uses compressed CNN to index possible object classes at ingest stage and reduces the query latency by clustering similar objects. Blazeit [32] develops neural networks-based methods to optimize approximate aggregation queries of detected objects in video database. Focusing on the object detection in video streams, Chameleon [31] proposes to adaptively select a suitable pipeline configuration including the resolution and frame rate of videos, backbone neural networks for inference, etc. Elf [73] is designed for mobile video analytic where the input data is pre-processed by a lightweight on-device model and then offloaded in parallel to multiple servers with the same subsequent inference functionality.

Our proposed input-filtering framework unifies the frame filtering and inference caching approaches. And we complement existing work in theoretical analysis and flexible supports for more input modalities and deployments.

8 CONCLUSION

In this paper, we study the input filtering problem and provide theoretical results on complexity comparisons between the hypothesis families of inference models and their input filters. We propose the first end-to-end learnable framework that unifies both SKIP and REUSE methods and supports multiple input modalities and deployments. We design and implement an input filter system InFi based on our framework. Comprehensive evaluations confirm our proven results and show that InFi has wider applicability and outperforms strong baselines on accuracy and efficiency.

ACKNOWLEDGMENTS

This research is supported by the National Key R&D Program of China 2018YFB0803400, China National Natural Science Foundation with No. 61822209, No. 62132018, No. 61932016, No.61625205, Key Research Program of Frontier Sciences, CAS. No. QYZDY-SSW-JSC002. This work is partially sponsored by CAAI-Huawei Mind-Spore Open Fund.