
Comprehensive and Efficient Data Labeling via
Adaptive Model Scheduling

Mu Yuan, Lan Zhang , Xiang-Yang Li
University of Science and Technology of China

Hefei, China
ym0813@mail.ustc.edu.cn, zhanglan@ustc.edu.cn, xiangyangli@ustc.edu.cn

Hui Xiong
Rutgers University
Newward, USA

xionghui@gmail.com

Abstract—Labeling data comprehensively and efficiently is a
widely needed but challenging task. With limited computing
resources, given a data stream and a collection of deep-learning
models, we propose to adaptively select and schedule a subset
of these models to execute, aiming to maximize the value of the
model output. Achieving this goal is nontrivial since a model’s
output on any data item is content-dependent and hard to
predict. In this paper, we present an Adaptive Model Scheduling
framework, consisting of 1) a deep reinforcement learning-based
approach to predict the value of unexecuted models by mining
semantic relationship among diverse models, and 2) two heuristic
algorithms to adaptively schedule models under deadline or
deadline-memory constraints. The proposed framework does not
require any prior knowledge of the data, which works as a pow-
erful complement to existing model optimization technologies.
We conduct extensive evaluations on 30 popular image labeling
models to demonstrate the effectiveness of our design.

Index Terms—multi-model inference, data labeling, adaptive
model scheduling, deep reinforcement learning

I. INTRODUCTION

With the explosive growth of data volume and the rapid
development of the AI industry, it is an appealing task to com-
prehensively label large amounts of data as fast as possible. For
example, annotating each image with a collection of semantic
labels can power a wide variety of functionalities, such as
multi-label image retrieval and image classification. On data
trading platforms [4], the richer the label of a data set, the
higher the price of the data set. There are two main streams
of previous work towards this objective. One stream of efforts
is enhancing the capability of a single model. Multi-label
learning and multi-task learning [3], [5] have been proposed to
enable a single model to extract more complex semantic. The
other stream focuses on accelerating the model execution by
designing a variety of methods, including model compression
via parameter pruning & sharing [1] and network architecture
optimization [9].

In this paper we propose an adaptive model scheduling
framework (see Fig. 1), consisting of 1) a novel deep re-
inforcement learning (DRL) based method to model the se-
mantic relationship among models and predict the output of
unexecuted models based on outputs of executed ones, and 2)
two heuristic scheduling algorithms to maximize the value of
output labels under a deadline or deadline-memory constraints.
Our adaptive model scheduling framework gathers the power

Lan Zhang is the corresponding author.

Model Value
Prediction

Adaptive
Scheduling
Algorithm

Resource
Constraints

Q
-V

al
ue

N
et

w
or

k

Labeling
State

Model
Execution

Update

Input Data

Scheduling
Policy

DRL Agent

Fig. 1. Overview of our proposed adaptive model scheduling framework.

of existing models to achieve comprehensive and efficient
labeling of large-scale data. It does not require users to have
deep learning related expertise or know the content of the raw
data in advance. To the best of our knowledge, this work is the
first step to explore the relationship among multiple models.
We conduct extensive evaluations on large-scale and highly
diverse images from five public datasets using 30 popular deep
learning models for 10 visual analysis tasks. Our experimental
results show that the proposed adaptive model scheduling
framework could save 53.1% execution time when we need
a 100% recall of all valuable labels. We could save about
70.0% execution time when we only need 80% recall of all
valuable labels. Given the 0.5s delay budget for each image,
our proposed algorithms could improve the obtained output
value by 132-310% compared with the randomly scheduling
of models.

II. MODEL VALUE PREDICTION

The first key component of our proposed adaptive model
scheduling framework is to predict the output values of un-
executed models based on the outputs of executed ones. The
prediction accuracy is critical to the subsequent scheduling
algorithms. To confirm the interactive characteristic of the
proposed framework, we propose a DRL based method for
the mode value prediction task. To our best knowledge, this
work is the first step to explore the DRL for mining semantic
relationships among labeling capacities of multiple models.
There are three main parts of a DRL method, including the
environment observation, the action space, and the reward
feedback. In our problem, we model the labeling state as the
environment observation, which is a n-dimension binary vec-
tor (n is the number of supported labels). The i-th binary value
1 or 0 indicates the state that the i-th label has been or has
not been output by executed models. In every iteration, after

This�paper�has�been�accepted�for�publication�at� ICDE’20.�This�version�
is�a preprint�identical�in�content�to�the�version�to�be�published.

yuanmu

the DRL agent selects an action/model, the system executes
the model on the input data. According to the execution result
O(m, d), the labeling state is updated and the agent receives
a reward.

A. Reward Function

The confidence li.conf represents the model’s judgment
of the accuracy of label li, which can be adopted as the
profit. However, the number of output labels influences the
reward, which varies among different deep learning models.
We use a logarithmic function to mitigate the bias caused by
different numbers of models’ output labels. On the other hand,
considering the different requirements of diverse applications
for model priorities, we introduce a parameter θm as the
user-defined priority for a model m. The greater θm is, the
higher priority the model m has. Taking all the aforementioned
factors into consideration, the reward function is defined as:

r(m, d) =

 ln(θm
∑

li∈O′({m},d)

li.conf + 1), O′(m, d) 6= ∅

− 1, O′({m}, d) = ∅
(1)

We define O′(m, d) as the set of new labels output by a
running model m, which have not been output by other
models yet. Since the supported labels of different models
may overlap, O′({m}, d) ⊆ O({m}, d). To avoid selecting
duplicated or valueless models, when O′({m}, d) = ∅, the
agent receives a punishment −1 as the feedback value.

B. Agent Learning

The DRL agent needs to learn the mapping from the
environment observation to the action space, which is the
mapping from the current labeling state to the selection of
the model to be executed. Facing the complexity of the
problem, we adopt a deep Q-value network (DQN) [6] as the
observation-action mapping function. The DQN architecture
can be adjusted to adapt to different sizes of observation and
action spaces. In our implementation, a hidden dense layer
with 256 neurons activated by ReLu is used to cope with a
1104-dimension observation space and a 30-dimension action
space. For training the agent, we implement four popular DRL
approaches: Original DQN [6], Double DQN [7], Dueling
DQN [8] and Deep SARSA [2]. Theoretically, the proposed
DRL-based agent can be trained by any Q-value network-
based DRL approach. The classic epsilon-greedy policy is
applied in the training process, which either selects the action
with the maximal Q value or randomly selects an action with
the probability epsilon. In this way, however, the training
process is hard to reach convergence. The reason is that, for
each input, after some iterations, the agent will reach the
state that all valuable labels have already been recalled. So
according to the reward function Eq. 1, any further action will
bring back a punishment, which obstructs the agent against
improving subsequent actions. To fix this problem, we add
an “END” action, whose reward is zero, to indicate the
end of the selection process for the current input. Then the
agent has the option to select the “END” action to avoid

Algorithm 1 Scheduling under deadline constraint.
Input: model set M , time budget Btime, DRL agent Q
Output: model subset S

1: S ← ∅
2: while Btime > 0 do
3: Filter out models that m.time > Btime

4: m∗ ← arg max
m∈M\S

Q(m,d)
m.time

5: S ← S ∪ {m∗}, Btime ← Btime −m∗.time
6: end while
7: return S

further punishment when no valuable model is left. Results of
experiments on agent learning confirm that the “END” action
effectively quickens the velocity of convergence.

III. ADAPTIVE MODEL SCHEDULING

The second key component of our framework is adaptive
scheduling algorithms under various computing resources con-
straints. Given a set of available deep learning models and
input data, the trained DRL agent provides the value prediction
for unexecuted models based on the current labeling state.
Based on the predicted values and remaining resources, a
scheduling algorithm determines the execution policy that aims
to maximize the evaluation function f(S, d). In this work, we
consider the two most common constraints for data labeling
tasks: deadline and limited memory.

A. Deadline Constraint
In a single processor case, models can only be executed

serially. The deadline constraint is set for each input data,
which is a common requirement of delay-sensitive systems.
With the deadline constraint, our optimization problem is
specified as follows:

max
S⊆M

f(S, d), s.t.
∑
m∈S

m.time ≤ Btime (2)

, where m.time is the execution time of model m and Btime
is the constraint of the total execution time for all selected
models in S. The most relevant problem is the submodular
function maximization with a knapsack constraint, which is
NP-hard. A commonly used heuristic approach to solve the
knapsack problem is the cost-profit greedy algorithm, which
selects the model m that maximizes f(S∪{m},d)−f(S,d)

m.time at each
iteration. In this work, we propose to adopt the cost-profit
greedy algorithm by using the Q value of each unexecuted
model as its estimated profit at each iteration.

B. Deadline-Memory Constraint
In a multi-processor case, multiple deep learning models

can be executed in parallel on a shared-memory computing
platform. A two-dimension constraint, a deadline and memory
constraint, is considered for each input data. The tangible
formulation of this optimization problem is:

max
S⊆M

f(S, d), where S =

N⋃
i=1

Si

s.t.
N∑
i=1

Si.time ≤ Btime,
∑
m∈Si

m.mem ≤ Bmem

(3)

Algorithm 2 Scheduling under deadline-memory constraints.
Input: model set M , time budget Btime, memory budget

Bmem, DRL agent Q
Output: model scheduling policy S

1: S ← [], TimeCost← 0, St ← ∅
2: while TimeCost < Btime do
3: Filter out models that m.mem > Bmem

4: m∗1 ← arg max
m∈M\S

Q(m,d)
m.time×m.mem

5: St ← St ∪ {m∗1}, Bt
time ← TimeCost+m∗1.time

6: Filter out models by temporary deadline Bt
time

7: while Bmem > 0 do
8: m∗2 ← arg max

m∈M\S
Q(m,d)
m.mem

9: St ← St ∪ {m∗2}, Bmem ← Bmem −m∗2.mem
10: end while
11: S.append(St), Wait until model m∗3 ∈ St finishes
12: Bmem ← Bmem +m∗3.mem, St ← St\{m∗3}
13: end while
14: return S

Given an input, let the model scheduling process have N
iterations in total. Si is the set of models being executed
at the i-th iteration. Let Si.time denote the running time
of the i-th iteration and Btime denote the acceptable total
execution time for all selected models S. The memory cost
of a model m is denoted as m.mem, which is measured by
the peak memory usage in our experiments. At any time, the
total memory usage of running models should not exceed the
memory budget Bmem. In this work, we design an efficient
heuristic algorithm 2. In each iteration, the algorithm first
greedily selects one model that provides the highest value per
unit resource area (the area here is the product of normalized
time cost and memory cost) and sets the end time of this model
as a temporary deadline. Subject to the temporary deadline,
the algorithm repeatedly selects the model with the highest
value-memory ratio until the memory budget is reached. The
intermediate model value is predicted by the pre-trained DRL
agent. Once a model completes its execution, releasing its
occupied memory and a new iteration begins.

C. Performance Analysis

To measure the performance of our heuristic algorithms,
we need the optimal solution. Under certain deadline and
deadline-memory constraints, the NP-hard property requires
to search O(|M |!) policies to find the optimal one. In our
implementation, it is infeasible to enumerate all practicable
execution policies of 30 models. Therefore, we relax the
constraint that when the remaining resources are not enough
for one model to complete its execution, the model can still
be selected and contribute label value partially. We refer
to the optimal policy of this relaxed problem as the opti-
mal* policy, which greedily selects the model with maximal
f(S∪{m},d)−f(S,d)

m.time within the deadline constraint or the model
with maximal f(S∪{m},d)−f(S,d)

m.time∗m.mem within the deadline-memory
constraint. The optimal* policy provides a performance upper
bound for the exact optimal policy.

DQN
DoubleDQN
DuelingDQN
DeepSARSA
Random
Optimal

Av
g

M
od

el
 E

xe
cu

tio
n

Ti
m

e
/s

0

1

2

3

4

5

Recall Rate
0 0.2 0.4 0.6 0.8 1.0

(a) MSCOCO 2017

DQN
DoubleDQN
DuelingDQN
DeepSARSA
Random
Optimal

Av
g

M
od

el
 E

xe
cu

tio
n

Ti
m

e
/s

0

1

2

3

4

5

Recall Rate
0 0.2 0.4 0.6 0.8 1.0

(b) MirFlickr25
Fig. 2. The average time cost of executed models per image vs. required
recall rate of output value.

IV. EVALUATION

We implemented the proposed adaptive model scheduling
framework and conducted extensive evaluations for large-scale
comprehensive image labeling tasks. We consider 10 visual
analysis tasks and deployed and trained a total of 30 popular
deep learning models. These models can label images with
a wide range of semantic information (1104 different labels
in all). Table IV summaries the deployed models and their
supported labels. For each model, the time cost (m.time) is set
as the average value while the GPU memory cost (m.mem)
is set as the peak value. We conducted experiments on two
public image datasets: MSCOCO 2017 and MirFlickr25. To
train the DRL agents and measure the effectiveness of our
model scheduling system, it is necessary to obtain the ground
truth of each model’s performance. We executed all 30 models
on two datasets and stored the output labels and confidences.
For each dataset, we split it into a training set and a testing
set with the ratio of 1:4. For all evaluations, we employed a
server with 48 Intel Xeon CPU E5-2650 v4 cores and one
Tesla P100 GPU. Due to the page limit we only demonstrate
part of experiments. For the full version, please refer to [10].

Task Name Label#
Object Detection 80
Place Classification 365
Face Detection 1
Face Landmark Localization 70
Pose Estimation 17
Emotion Classification 7
Gender Classification 2
Action Classification 400
Hand Landmark Localization 42
Dog Classification 120
10 Tasks 1104 Labels

TABLE I
SUMMARY OF 10 VISUAL ANALYSIS TASKS.

A. RL-Based Model Value Prediction

We implemented our designed DRL agent to predict model
value before the execution. We trained the DRL agent using
four methods with the identical Q-value network as introduced
in Section II-B, including DQN [6], DoubleDQN [7], Du-
elingDQN [8] and DeepSARSA [2]. We trained and tested
these four DRL agents on two datasets, MSCOCO 2017,
MirFlickr25 separately. We use the Q-value greedy policy
that greedily selects the model with maximal Q value as the
next one to be executed until the recall rate of true output

Q Greedy
Cost-Q Greedy
Random
Optimal*

R
ec

al
l R

at
e

0

0.2

0.4

0.6

0.8

1.0

Deadline /s
0 1 2 3 4 5

(a) MSCOCO 2017

Q Greedy
Cost-Q Greedy
Random
Optimal*

R
ec

al
l R

at
e

0

0.2

0.4

0.6

0.8

1.0

Deadline /s
0 1 2 3 4 5

(b) MirFlickr25
Fig. 3. Value recall rate under deadline constraints.

Agent
Random
Optimal*

R
ec

al
l R

at
e

0

0.2

0.4

0.6

0.8

1.0

Deadline
0 0.5 1.0 1.5 2.0

(a) 8GB Memory

Agent
Random
Optimal*

R
ec

al
l R

at
e

0

0.2

0.4

0.6

0.8

1.0

Deadline
0 0.5 1.0 1.5 2.0

(b) 12GB Memory
Fig. 4. Value recall rate under memory-deadline constraints.

value reaches a given threshold 1. Through these experiments,
we compare the performance of DRL agents trained by four
schemas. To quantify the effectiveness of our DRL-based
model value prediction method, we also implemented the
following random policy and optimal policy as a comparison.
Fig. 2 shows the experimental results of different policies
on two datasets, using the average execution time as the
metric respectively. There is a significant gap between the
random policy and the optimal policy. By predicting the model
value, all four DRL agents outperform the random policy and
effectively improve the model selection. Among the four DRL
agents, the one trained by DuelingDQN performs best, which
saves 48.6-51.2% model execution time when the required
recall rate is 1.0, compared with the random policy.

B. Scheduling under Deadline Constraint

We consider the most common constraint, the deadline of
each input data, of data labeling tasks, and evaluate the pro-
posed scheduling Algorithm 1 (referred to as Cost-Q Greedy
policy). Using the output value recall rate under deadline
constraint as the metric, three policies are implemented for
comparison: random policy, optimal* policy (§III-C) and Q-
greedy policy. As a representative, DRL agents in the follow-
ing experiments are trained with DuelingDQN schema. Fig. 3
shows that Algorithm 1 outperforms the Q-greedy policy.
Algorithm 1 boosts the value recall rate by 188.7-309.5% with
a 0.5s delay budget, compared with the random policies.

C. Scheduling under Memory-Deadline Constraints

To tackle the more challenging problem, scheduling mod-
els under two-dimension knapsack constraints, we propose
Algorithm 2. Deadline and GPU memory constraints are
commonly limited computing resources which are orthogonal:
GPU memory restricts the spatial size of the parallel deep
learning models, while deadline limits the overall running time

1The stop condition is determined by the ground truth

in temporal dimension.Identically, we use the output value
recall rate as the metric and random policy and optimal* policy
are used as baselines. As a representative, we use the results of
DuelingDQN on MSCOCO 2017 dataset. As shown in Fig. 4,
Algorithm 2 significantly improves the output value recall rate
compared with random policies. More specifically, the recall
rate of output value is improved by 106.9% / 52.8% under
8GB / 12GB GPU memory and 0.8s deadline constraints.

V. CONCLUSION

In this work, we tackled a challenging task, adaptive model
scheduling, which works as an effective approach towards
comprehensive and efficient data labeling. We designed a
framework, including a novel method to predict unexecuted
models’ value and adaptive scheduling algorithms to improve
the aggregated values of executed models for each data item.
Our extensive evaluations demonstrate that our design achieves
significant performance improvement.

VI. ACKNOWLEDGEMENTS

The research is partially supported by National Key R&D
Program of China 2018YFB0803400, NSF China under
Grants No. 61822209, China National Funds for Distin-
guished Young Scientists with No.61625205, NSF China under
Grants No.61751211, 61932016, 61520106007, the Funda-
mental Research Funds for the Central Universities and Key
Research Program of Frontier Sciences, CAS. No.QYZDY-
SSW-JSC002.

REFERENCES

[1] W. Chen, J. Wilson, S. Tyree, K. Q. Weinberger, and Y. Chen. Com-
pressing convolutional neural networks in the frequency domain. In
Proceedings of the 22nd ACM SIGKDD, pages 1475–1484. ACM, 2016.

[2] M. Corazza and A. Sangalli. Q-learning and sarsa: a comparison be-
tween two intelligent stochastic control approaches for financial trading.
University Ca’Foscari of Venice, Dept. of Economics Research Paper
Series No, 15, 2015.

[3] L. Kaiser, A. N. Gomez, N. Shazeer, A. Vaswani, N. Parmar, L. Jones,
and J. Uszkoreit. One model to learn them all. arXiv preprint
arXiv:1706.05137, 2017.

[4] X.-Y. Li, J. Qian, and X. Wang. Can china lead the development of data
trading and sharing markets? Communications of the ACM, 61(11):50–
51, 2018.

[5] J. Ma, Z. Zhao, X. Yi, J. Chen, L. Hong, and E. H. Chi. Modeling task
relationships in multi-task learning with multi-gate mixture-of-experts.
In Proceedings of the 24th ACM SIGKDD, pages 1930–1939. ACM,
2018.

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller. Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

[7] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning
with double q-learning. In Thirtieth AAAI, 2016.

[8] Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and
N. De Freitas. Dueling network architectures for deep reinforcement
learning. arXiv preprint arXiv:1511.06581, 2015.

[9] B. Wu, F. N. Iandola, P. H. Jin, and K. Keutzer. Squeezedet: Unified,
small, low power fully convolutional neural networks for real-time object
detection for autonomous driving. In CVPR Workshops, pages 446–454,
2017.

[10] M. Yuan, L. Zhang, X.-Y. Li, and H. Xiong. Comprehensive and
efficient data labeling via adaptive model scheduling. arXiv preprint
arXiv:2002.05520, 2020.

